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1 Introduction

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point. Frequently the messages
have meaning; that is they refer to or are correlated according to some system with
certain physical or conceptual entities. These semantic aspects of communication are
irrelevant to the engineering problem. The significant aspect is that the actual message
is one selected from a set of possible messages. The system must be designed to operate
for each possible selection, not just the one which will actually be chosen since this is
unknown at the time of design.

—Claude Shannon, A Mathematical Theory of Communication (1948)



1 Introduction

We live in the era of information. Information technology permeates every as-
pect of modern life, shaping how we communicate, learn, have social interactions,
and spend our leisure time. Beyond daily life, information plays a crucial role in
fields like physics, biology, neuroscience, and engineering, where it is used to study
and enhance the function of complex systems and machines. Quantifying the flow
of information within these domains is essential, and, although the concept of in-
formation is abstract, its power in explaining the processes that shape our world is
profound.

The explanatory power of information stems from the intrinsic link between in-
formation and performance. Without a potential reward, or the possibility of avoid-
ing harm, information has no value.! As a result, information collection and pro-
cessing typically serves a clear purpose. For example, a self-driving car processes in-
formation from its sensors in order to make decisions about navigation [161]. Sim-
ilarly, bacteria acquire chemical information about their environment in order to
optimize their movement toward nutrients and away from toxins, maximizing their
chance of survival [107]. More generally, in evolutionary biology the link between
genetic information and fitness is explored [1, 77]. Thus, whether in biological or-
ganisms or engineered systems, understanding how information is used is essential
for optimizing performance.

Quantifying information transmission is vital for understanding and improving
natural or engineered information-processing systems. Shannon’s information the-
ory [164] provides the framework for studying the efficiency and reliability of any
communication channel, whether it’s a telephone line, a biochemical signaling cas-
cade, or a neural pathway in the brain. The cornerstone of information theory is
a set of mathematical definitions to rigorously quantify amounts of information.
These makes it possible to determine, in absolute terms, the amount of information
that is transmitted by a given information-processing mechanism, for a specific in-
put signal. Moreover, it is possible to quantify the maximum amount of information
that can be transmitted through a given mechanism under optimal conditions: this
limit is known as the channel capacity, measured in bits per time unit. Shannon’s
information measures enable us to characterize a wide range of systems in terms of
their information transmission capabilities.

Information theory has found many applications across disciplines, and is fre-
quently used to understand and improve sensory or computational systems. In bi-
ology, information transmission is studied, e.g., in the brain, by analyzing the timing
of electrical impulses between neurons [177, 154]. Within cells, information flow in

In mathematical terms, this interplay between information and reward can be characterized by
utility functions, which quantify the benefits of different actions based on available information
[128, 158].



biochemical signaling and transcription regulation has been extensively studied by
analyzing biochemical pathways [190, 111, 27]. In artificial intelligence, informa-
tion theory has proven useful in improving learning in neural networks. The infor-
mation bottleneck theory [185] suggests that the performance of neural networks
can be enhanced by balancing compression and information retention during train-
ing [184, 166]. In economics and finance, information theory has been applied to
describe financial markets [52] and to optimize financial decision-making under
uncertainty [84]. In optics, information theory is employed to study the efficiency
of signal processing in optical resonators, with applications in precision sensing and
optical computing [5, 141]. Information theory boasts a wealth of applications and
is essential for the analysis and theoretical understanding of information-processing
systems.

The canonical measure for the quality of information transmission is the mutual
information. It quantifies how much information is shared between two random
variables, such as the input and output signals of an information-processing mech-
anism, see Fig. 1.1. Let S and X be two random variables that are jointly distributed
according to the density P(s, x) and with marginal densities P(s) and P(x). The mu-
tual information between S and X is then defined as

1(5,X) = ff P(s, x)l Pf()sp’(“)))dsdx (1.1)

and provides a measure of correlation between the random variables.”? From the
definition it follows that I(S,X) = 0 only if S and X are statistically independent,
and I(S,X) > 0 otherwise. Thus, the mutual information quantifies the statistical
dependence between random variables, equally characterizing the degrees of influ-
ence from S — X and from X — S. Hence, the mutual information is a symmetric
measure, satisfying I(S,X) = I(X, S). In a typical information processing system,
the input S influences the output X but there is no feedback from X to S. In such
cases, the mutual information I(S, X) provides a measure for how effectively infor-
mation about S is transmitted through the system into the output X.

In biological systems, information transmission has frequently been quantified
via the instantaneous mutual information (IMI) I(S;,,X;,), i.e. the mutual infor-
mation between stimulus and response at two time points. This measure has been

%In contrast to other correlation measures used in statistics, such as the Pearson correlation coeffi-
cient, the mutual information captures both linear and nonlinear dependencies between variables.
Additionally, in contrast to other correlation measures, the mutual information satisfies the data
processing inequality, which states that no type of post-processing can increase the mutual infor-
mation between the input and output [30, 90]. These properties make the mutual information
uniquely suited for describing the fidelity of the input-output mapping in information-processing
systems. Note however that a naive use of the data processing inequality leads to seemingly con-
tradictory results when applied to the stationary dynamics of processing cascades [142, 49, 34].
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input signal s processing device output signal x

Figure 1.1: A generic information processing device takes an input signal s and pro-
duces an output signal x. Because the output is correlated with the in-
put, we can quantify the information that s and x share. This quantity
is called the mutual information and measures the information that is
transmitted.

applied for analyzing biochemical pathways [191, 205, 27, 23, 29, 135, 142] and neu-
ral spiking dynamics [177, 20]. However, in many cases, the IMI cannot correctly
quantify information transmission due to correlations within the input or the out-
put which reduce the total information transmitted. More generally, information
may be encoded in the temporal patterns of signals, which cannot be captured by a
pointwise information measure like the IMI. Thus, the IMI is generally inadequate
for computing information transmission in systems which process dynamical sig-
nals.

There are many examples of information being encoded in dynamical features of
signals. In cellular Ca?* signaling, information seems to be encoded in the timing
and duration of calcium bursts [22], while in the MAPK pathway information is
encoded in the amplitude and duration of the transient phosphorylation response
to external stimuli [116, 126]. Moreover, there are reasons to believe that encoding
information in dynamical signal features is advantageous for reliable information
transmission [163]. Studying the information transmitted via temporal features is
thus highly desirable but not possible with an instantaneous information measure.
Therefore, in cases where the dynamics of input or output time-series may carry
relevant information, the need for appropriate dynamical information measures has
been widely recognized [176, 194, 156, 112, 181, 107, 126, 72, 196, 130].

The natural measure for quantifying information transmission via dynamical sig-
nals is the trajectory mutual information. It takes into account the total information
encoded in the input and output trajectories of a system, and therefore captures all
information transmitted over a specific time interval. Conceptually, its definition is
simple. The trajectory mutual information is the mutual information between the
input and output trajectories of a stochastic process, given by

1(8,X) = ff P(s, x) ln Pl() (;P’(C))>ds dx (1.2)

where the bold symbols s and x are used to denote trajectories. These trajectories



arise from a stochastic process that defines the joint probability distribution P(s, x).
The integral itself runs over all possible input and output trajectories.

The closely related mutual information rate is defined as the rate at which the
trajectory mutual information increases with the duration of the trajectories in the
long-time limit. Let ST and X7 be trajectories of duration T, then the mutual infor-
mation rate is given by )

. I(ST,Xr
R= lim === (1.3)
The mutual information rate quantifies how many independent messages can be
transmitted per unit time, on average, via a communication channel. It depends on
both, the signal statistics of the input, as well as the transmission properties of the
channel. In the absence of feedback it is equal to the transfer entropy [160, 81].

The trajectory mutual information and the mutual information rate are funda-
mental measures for information transmission in dynamical systems. They serve
as key performance metrics for biochemical signaling networks [194, 27], as well
as for neural sensory systems [177, 20]. More generally, in communication chan-
nels with memory, the mutual information rate for the optimal input signal de-
termines the channel capacity [30]. In financial markets, it quantifies correlations
in stochastic time series, such as stock prices and trading volumes [52]. Finally,
in non-equilibrium thermodynamics, the trajectory mutual information provides a
link between information theory and stochastic thermodynamics [6, 73]. Efficient
methods for calculating the trajectory mutual information and the mutual informa-
tion rate are needed and constitute the primary objective of this thesis.

Unfortunately, calculating the mutual information between trajectories is noto-
riously difficult due to the high dimensionality of trajectory space [137]. Conven-
tional approaches for computing mutual information require non-parametric esti-
mates of the input and output entropy, typically obtained via histograms or kernel
density estimators [177, 137, 27, 190, 192, 112]. However, the high-dimensional
nature of trajectories makes it infeasible to obtain enough data for accurate non-
parametric distribution estimates. Other non-parametric entropy estimators such
as the k-nearest-neighbor estimator [81, 94] depend on a choice of metric in trajec-
tory space and become unreliable for long trajectories [25]. Thus, except for very
simple systems [112], the curse of dimensionality makes it infeasible to obtain ac-
curate results for the trajectory mutual information using conventional mutual in-
formation estimators.

Due to the inherent difficulty of directly estimating the mutual information be-
tween trajectories, previous research has often employed simplified models or ap-
proximations. In some cases, the problem can be simplified by considering static
(scalar) inputs instead of input signal trajectories [163, 25, 181]. But this approach
ignores the dynamics of the input signal. Lower bounds for the mutual information
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can be derived from the Donsker-Varadhan inequality [43, 13, 108], or obtained
through general-purpose compression algorithms [9, 59, 25]. While exact analyt-
ical results for the trajectory mutual information are available for certain simple
processes such as Gaussian [194] or Poisson channels [169, 61], many complex, re-
alistic systems lack analytical solutions, and approximations have to be employed.
For systems governed by a master equation, numerical or analytical approximations
are sometimes feasible [46, 119] but these become intractable for complex systems.
Finally, the Gaussian framework for approximating the mutual information rate is
particularly widely used [194, 107, 72], though it assumes linear system dynamics
and Gaussian noise statistics. These assumptions make it ill-suited for many realis-
tic nonlinear information-processing systems.

To address the limitations of previous methods, we introduce Path Weight Sam-
pling (PWS), a novel Monte Carlo technique for computing the trajectory mutual
information efficiently and accurately. PWS leverages free-energy estimators from
statistical physics and combines analytical and numerical methods to circumvent
the curse of dimensionality associated with long trajectories. The approach relies
on exact calculations of trajectory likelihoods derived analytically from a stochastic
model. By averaging these likelihoods in a Monte Carlo fashion, PWS can accurately
compute the trajectory mutual information, even in high-dimensional settings.

PWS is an exact Monte Carlo scheme, in the sense that it provides an unbiased
statistical estimate of the trajectory mutual information. In PWS, the mutual infor-
mation is computed via the identity

1(S,X) = HX) - HX | S) (1.4)

as the difference between the marginal output entropy H(X) associated with the
marginal distribution P(x) of the output trajectories x and the conditional output
entropy H(X | S) associated with P(x|s), the conditional output distribution for a
given input s. Both entropies are evaluated as Monte-Carlo averages over the asso-
ciated distribution, i.e., H(X) = —(In P(x)) and H(X | §) = —(In P(x|s)), where the
notation (-) denotes an average with respect to the joint distribution P(s, x). The key
insights of PWS are that the conditional probability P(x|s) can be directly evaluated
from a generative model of the system, and that the marginal probability P(x) can
be computed efficiently via marginalization using Monte Carlo procedures inspired
by computational statistical physics.

The crux of PWS lies in the efficient computation of P(x) via the marginalization
integral

P(x) = fP(xls) P(s)ds. (1.5)

To evaluate this integral efficiently, we present different variants of PWS. In Chap-
ter 2 we introduce Direct PWS, the simplest variant of PWS, where Eq. (1.5) is com-



1.1 Contributions of This Work

puted bia a “brute-force” Monte Carlo approach that works well for short trajecto-
ries, but which becomes exponentially harder for long trajectories. In Chapter 3,
we present two additional variants of PWS that evaluate the marginalization in-
tegral more efficiently, RR-PWS and TI-PWS. Rosenbluth-Rosenbluth PWS (RR-
PWS) is based on efficient free-energy estimation techniques developed in poly-
mer physics [155, 167, 69, 55]. Thermodynamic integration PWS (TI-PWS) uses
techniques from transition path sampling to derive a MCMC sampler in trajectory
space [19]. From this MCMC chain, we can compute the marginalization integral
using thermodynamic integration [62, 127, 55]. Finally, in Chapter 6, we introduce
a fourth marginalization technique based on variational inference via neural net-
works [88]. Its conceptual simplicity, coupled with powerful marginalization meth-
ods, make PWS a versatile framework for computing the trajectory mutual informa-
tion in a variety of scenarios.

Yet, to compute the mutual information PWS requires evaluating the conditional
trajectory probability P(x|s), which in turn requires a stochastic model defining
a probability measure over trajectories. While (stochastic) mechanistic models of
experimental systems are increasingly becoming available, the question remains
whether PWS can be applied directly to experimental data when no such model
is available. In Chapter 6, we show that machine learning can be used to construct
a data-driven stochastic model that captures the trajectory statistics, i.e. P(x|s), en-
abling the application of PWS to experimental data.

We demonstrate the practical utility of PWS by calculating the trajectory mutual
information for a range of systems. In Chapters 3 and 5, we study a minimal model
for gene expression, showing that PWS can estimate the mutual information rate
for this system more accurately than any previous technique. Using PWS, we reveal
that the Gaussian approximation, though expected to hold due to the system’s lin-
earity, does not provide an accurate estimate in this case. In Chapters 5 and 6 we
extend our analysis to simple nonlinear models for information transmission, com-
paring PWS results against the Gaussian approximation; for these models, PWS is
the first technique capable of accurately computing trajectory mutual information.
Moreover, in Chapter 4 we apply PWS to a complex stochastic model of bacterial
chemotaxis, marking the first instance where the information rate for a system of
this complexity can be computed exactly. Together, these examples demonstrate
that an exact technique like PWS is indispensable for understanding information
transmission in realistic scenarios.

1.1 Contributions of This Work

The main contributions of this thesis are as follows:
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1. PWS: A novel framework for computing the trajectory mutual infor-
mation: We introduce Path Weight Sampling, a computational framework
for calculating the trajectory mutual information in dynamical stochastic sys-
tems. This framework is exact, applicable to both continuous and discrete
time processes, and does not rely on any assumptions about the system’s dy-
namics. PWS and its main variants are described in Chapters 2 and 3.

2. Discovery of discrepancies between experiments and mathematical
models of chemotaxis: We apply PWS to various systems, including the
complex bacterial chemotaxis signaling network. By studying the informa-
tion transmission rate of chemotaxis and comparing our results against those
of Mattingly et al. [107], we find that the widely-used MWC model of chemo-
taxis cannot explain the experimental data. We find that the number of recep-
tor clusters is smaller and that the size of these clusters is larger than hitherto
believed. We describe and characterize this finding in Chapter 4.

3. Study of the accuracy of the gaussian approximation for the informa-
tion rate: In Chapter 5, we use PWS to quantitatively study the accuracy of
the widely-used Gaussian approximation. Before PWS, no exact technique
was available to obtain ground truth results of the mutual information rate for
non-linear systems, and the accuracy of the Gaussian framework could not be
evaluated. We reveal that the Gaussian model can be surprisingly inaccurate,
even for linear reaction systems.

4. Neural networks for learning the stochastic dynamics from time-series
data: In Chapter 6, we demonstrate that recent machine learning techniques
can be employed to automatically learn the stochastic dynamics from experi-
mental data. We show that by combining these learned models with PWS, it
becomes possible to compute the trajectory mutual information directly from
time-series data. This approach outperforms previous techniques, like the
Gaussian approximation, for estimating information rates from data.

1.2 Thesis Outline

The remainder of this thesis is divided into 5 chapters. We first present three vari-
ants of PWS, all of which compute the conditional entropy in the same manner, but
differ in the way this Monte Carlo averaging procedure for computing the marginal
probability P[x] is carried out. Chapters 2 to 4 of this thesis have been published
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previously in Physical Review X.3

In Chapter 2 we present the simplest PWS variant, Direct PWS (DPWS). To com-
pute P[x], DPWS performs a brute-force average of the path likelihoods P[x|s] over
the input trajectories s. While we show that this scheme works for simple systems,
the brute-force Monte Carlo averaging procedure becomes more difficult for larger
systems and exponentially harder for longer trajectories.

In Chapter 3, we present our second and third variant of PWS which are based
on the realization that the marginal probability [x] is akin to a partition func-
tion. These schemes leverage techniques for computing free energies from statisti-
cal physics. We also apply PWS to a simple model system which consists of a simple
pair of coupled birth-death processes which allows us to compare the efficiency of
the three PWS variants, as well as to compare the PWS results against analytical
results from the Gaussian approximation [194].

In Chapter 4, we apply PWS to the bacterial chemotaxis system, which is arguably
the best characterized signaling system in biology. Mattingly et al. [107] recently ar-
gued that bacterial chemotaxis in shallow gradients is information limited. Yet, to
compute the information rate from their experimental data they had to employ a
Gaussian framework. PWS makes it possible to asses the accuracy of this approxi-
mation.

Chapter 5 is devoted to studying the accuracy of the Gaussian approximation for
non-Gaussian systems. By understanding the limitations and strengths of the Gaus-
sian approximation, this chapter aims to provide deeper insights into selecting the
appropriate method for MI estimation depending on the system.

Finally, Chapter 6 we introduce ML-PWS, which combines recent machine learn-
ing models with PWS, to compute the mutual information directly from data. This
idea significantly extends the range of applications for PWS, since we no longer
require a mechanistic model of the system. Instead, the stochastic model is auto-
matically learned from the data.

3M. Reinhardt, G. Tkacik, and P. R. ten Wolde, Path Weight Sampling: Exact Monte Carlo Compu-
tation of the Mutual Information between Stochastic Trajectories, Phys. Rev. X 13, 041017 (2023)
[152]






2 Path Weight Sampling

Most natural and engineered information-processing systems transmit information
via signals that vary in time. Computing the information transmission rate or the in-
formation encoded in the temporal characteristics of these signals requires the mutual
information between the input and output signals as a function of time, i.e., between
the input and output trajectories. Yet, this is notoriously difficult because of the high-
dimensional nature of the trajectory space, and all existing techniques require approx-
imations. We present an exact Monte Carlo technique called Path Weight Sampling
(PWS) that, for the first time, makes it possible to compute the mutual information
between input and output trajectories for any stochastic system that is described by a
master equation. The principal idea is to use the master equation to evaluate the exact
conditional probability of an individual output trajectory for a given input trajectory
and average this via Monte Carlo sampling in trajectory space to obtain the mutual
information. PWS also makes it possible to compute the mutual information between
input and output trajectories for systems with hidden internal states as well as systems
with feedback from output to input.

The contents of this chapter have been published in Phys. Rev. X 13, 041017 (2023) [152].
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2 Path Weight Sampling

Quantifying information transmission is vital for understanding and designing
natural and engineered information-processing systems, ranging from biochemi-
cal and neural networks, to electronic circuits and optical systems [189, 188, 101].
Claude Shannon introduced the mutual information and the information rate as
the central measures of Information Theory more than 70 years ago [164]. These
measures quantify the fidelity by which a noisy system transmits information from
its inputs to its outputs. Yet, computing these quantities exactly remains notori-
ously difficult, if not impossible. This is because the inputs and outputs are often
not scalar values, but rather temporal trajectories.

Most, if not all, information-processing systems transmit signal that vary in time.
The canonical measure for quantifying information transmission via time-varying
signals is the mutual information rate [164, 30, 194, 52]. It quantifies the speed at
which distinct messages are transmitted through the system, and it depends not only
on the accuracy of the input-output mapping but also on the correlations within
the input and output signals. Computing the mutual information rate thus requires
computing the mutual information between the input and output trajectories, not
between their signal values at given time points. The rate at which this trajectory
mutual information increases with the trajectory duration in the long-time limit
defines the mutual information rate, see Eq. (1.3). In the absence of feedback this
rate also equals the multi-step transfer entropy [106, 160].

More generally, useful information is often contained in the temporal dynamics
of the signal. A prime example is bacterial chemotaxis, where the response does not
depend on the current ligand concentration, but rather on whether it has changed in
the recent past [18, 162]. Moreover, the information from the input may be encoded
in the temporal dynamics of the output [104, 146, 163, 68]. Quantifying information
encoded in these temporal features of the signals requires the mutual information
not between two time points, i.e. the instantaneous mutual information, but rather
between input and output trajectories [194].

Unfortunately, computing the mutual information between trajectories is excep-
tionally difficult. The conventional approach requires non-parametric distribution
estimates of the input and output distributions, e.g. via histograms of data ob-
tained through simulations or experiments [177, 137, 27,190, 192, 112]. These non-
parametric distribution estimates are necessary because the mutual information
cannot generally be computed from summary statistics like the mean or variance
of the data alone. However, the high-dimensional nature of trajectories makes it
infeasible to obtain enough empirical data to accurately estimate the required prob-
ability distributions. Moreover, this approach requires the discretization of time,
which becomes problematic when the information is encoded in the precise timing
of signal spikes, as, e.g., in neuronal systems [154]. Except for the simplest systems
with a binary state space [112], the conventional approach to estimate the mutual

12



information via histograms therefore cannot be transposed to trajectories.

Because there are currently no general schemes available to compute the mutual
information between trajectories exactly, approximate methods or simplified mod-
els are typically used. While empirical distribution estimates can be avoided by em-
ploying the K-nearest-neighbors entropy estimator [81, 94], this method depends
on a choice of metric in trajectory space and can become unreliable for long tra-
jectories [25]. Alternative, decoding-based information estimates can be developed
for trajectories [59], but merely provide a lower bound of the mutual information,
and it remains unclear how tight these lower bounds are [20, 25, 76]. Analytical
results are avaiable for simple systems [183], and for linear systems that obey Gaus-
sian statistics, the mutual information between trajectories can be obtained from
the covariance matrix [194]. However, many information processing systems are
complex and non-linear such that the Gaussian approximation does not hold, and
analytical solutions do not exist. A more promising approach to estimate the tra-
jectory mutual information for chemical reaction networks has been developed by
Duso and Zechner [46] and generalized in Ref. [119]. However, the scheme relies
on a moment closure approximation and has so far only been applied to very simple
networks, seemingly being difficult to extend to complex systems.

Here, we present Path Weight Sampling (PWS), an exact technique to compute
the trajectory mutual information for any system described by a master equation.
Master equations are widely used to model chemical reaction networks [37, 109,
110, 48], biological population growth [50, 140, 32], economic processes [209, 100],
and a large variety of other systems [74, 24], making our scheme of interest to a
broad class of problems.

PWSisan exact Monte Carlo scheme, in the sense that it provides an unbiased sta-
tistical estimate of the trajectory mutual information. In PWS, the mutual informa-
tion is computed as the difference between the marginal output entropy associated
with the marginal distribution P[x] of the output trajectories x, and the conditional
output entropy associated with the output distribution P[x|s] conditioned on the
input trajectory s. Our scheme is inspired by the observation of Cepeda-Humerez
et al. [25] that the path likelihood, i.e., the probability P[x|s], can be computed ex-
actly from the master equation for a static input signal s. This makes it possible
to compute the mutual information between a discrete input and a time-varying
output via a Monte Carlo averaging procedure of the likelihoods, rather than from
an empirical estimate of the intractable high-dimensional probability distribution
functions. The scheme of Cepeda-Humerez et al. [25] is however limited to discrete
input signals that do not vary in time. Here we show that the path likelihood P[x|s]
can also be computed for a dynamical input trajectory s, which allows us to compute
the conditional output entropy also for time-varying inputs. While this solves the
problem in part, the marginal output entropy associated with 2[x] cannot be com-
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puted with the approach of Cepeda-Humerez et al., and thus requires a different
scheme.

In Section 2.1 we show how, for time-varying input signals, the marginal proba-
bility P[x] can be obtained as a Monte Carlo average of P[x|s] over a large number
of input trajectories. We then use the Monte Carlo estimate for ’[x] to compute the
marginal output entropy.

In Section 2.2 we show that, surprisingly, our PWS methods additionally make
it possible to compute the mutual information between input and output trajecto-
ries of systems with hidden internal states. Hidden states correspond, for example,
to network components that merely relay, process or transform the signal from the
input to the output. Indeed, the downstream system typically responds to the in-
formation that is encoded in this output, and not the other internal system compo-
nents. Most information processing systems contain such hidden states, and gener-
ally we want to integrate out these latent network components. In addition, we can
generalize PWS to systems with feedback from the output to the input as shown in
Section 2.3.

2.1 Monte Carlo Estimate of the Mutual Information

In this section we present the fundamental ideas of PWS. These ideas lie at the heart
of Direct PWS (DPWS) and also form the foundation of the other two more advanced
PWS variants which will be explained in Chapter 3.

2.1.1 Statement of the Problem

All information processing systems repeatedly take an input value s and produce
a corresponding output x. Due to noise, the output produced for the same input
can be different every time, such that the system samples outputs from the dis-
tribution P(x|s). In the information theoretic sense, the device’s capabilities are
fully specified by its output distributions for all possible inputs. We consider the in-
puts as being distributed according to a probability density P(s) such that the whole
setup of signal and device is completely described by the joint probability density
P(s, x) = P(s) P(x|s).

When the conditional output distributions P(x|s) overlap with each other, infor-
mation is lost because the input can not always be inferred uniquely from the output
(see Fig. 2.1). The remaining information that the output carries about the signal
on average is quantified by the mutual information between input and output.

Mathematically, the mutual information between a random variable 8, represent-
ing the input, and a second random variable XX, representing the output, is defined
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output
distributions
input s, = Plx|s1] g.;
o O 3
input s, * g_é * P[x|s:] >§
o S 3
input ss @ Plx|ss] g

Figure 2.1: Schematic of information processing under the influence of noise. Over-
lapping output distributions for different inputs lead to information loss,
because the input cannot always be uniquely inferred from the output.
The mutual information I(8, X) quantifies how much information the
observation of the output typically retains about the input signal.

as
P(s, x)

P(s)P(x)’

where the marginal output distribution is given by P(x) = f ds P(s, x). The quan-
tity I(8, XX) as defined above is a non-negative real number, representing the mutual
information between 8§ and XX in nats. The integrals in Eq. (2.1) run over all pos-
sible realizations of the random variables § and XX. In our case, § and X represent
stochastic trajectories and so the integrals become path integrals.

In general, the mutual information can be decomposed into two terms, a con-
ditional and marginal entropy. Due to the symmetry of Eq. (2.1) with respect to
exchange of § and X, this decomposition can be written as

I(8,X) = j]ds dx P(s,x)In ———— 2.1

1(8, ) = H(S) — H(S|X) = H(:X) — H(X|S). 2.2)

The (marginal) input entropy H(8) represents the total uncertainty about the input,
and the conditional input entropy H(8|:X) describes the remaining uncertainty of
the input after having observed the output. Thus, the mutual information I(S, X) =
H(8) — H(8|X) naturally quantifies the reduction in uncertainty about the input
through the observation of the output.

When analyzing data from experiments or simulations however, the mutual in-
formation is generally estimated via I($,X) = H(X) — H(X|S). This is because
simulation or experimental data generally provide information about the distribu-
tion of outputs for a given input, rather than vice versa. The accessible entropies are
thus the marginal output entropy H(XX') and the conditional output entropy H(XX|S),
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which are defined as
H(X) = - / dx P(x)In P(x) (2.3)
H(X|S) = — / ds P(s) f dx P(x|s) In P(x|s). 2.4)

The conventional way of computing the mutual information involves generating
many samples to obtain empirical distribution estimates for P(x|s) and P(x) via his-
tograms. However, the number of samples needs to be substantially larger than the
number of histogram bins to reduce the noise in the bin counts. Obtaining enough
samples is effectively impossible for high-dimensional data, like signal trajectories.
Moreover, any nonzero bin size leads to a systematic bias in the entropy estimates,
even in one dimension [137]. These limitations of the conventional method make
it impractical for high-dimensional data, highlighting the need for alternative ap-
proaches to accurately compute mutual information for trajectories.

2.1.2 Direct PWS

The central idea of PWS is to compute probability densities for trajectories exactly,
sidestepping the problem having to estimate them via histograms. We exploit that
for systems described by a master equation, the conditional probability of an output
trajectory for a given input trajectory can be computed analytically. With this insight
we can derive a procedure to compute the mutual information. Specifically, we will
show that

» for a system described by a master equation, the trajectory likelihood P[x|s]
is a quantity that can be computed on the fly in a stochastic simulation;

« input trajectories can be generated from P[s], output trajectories for a given
input s can be generated according to P[x|s] using standard SSA (Gillespie)
simulations;

« by combining the two ideas above, we can derive a direct Monte Carlo esti-
mate for the mutual information I(8, X), as illustrated in Fig. 2.2.

Note that we denote trajectories by bold symbols to distinguish them from scalar
quantities.

Our technique is conceptually straightforward. Using Monte Carlo simulations
we can compute averages over the configuration space of trajectories. Suppose we
have a function f[z] that takes a trajectory z and produces a scalar value. The mean
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1. Simulate input output pairs (s;, x;)

T o~ INpUt trajectory s,
T e —arn ~ OUtpUL trajectory x,

i e i S T e
e e TN A e

NN o PP e, it
W

N pairs

2. Compute trajectory likelihoods P[x; | s;]
Plx | s1= PG(to) [ PGx(e)=x(2) | s)
i=1

3. Compute marginal probabilities P[x;]

Direct PWS RR-PWS TI-PWS
Brute force estimate of the Estimate of the marginal MCMC estimate of the
marginal probability P[x] using | probability P[x] using biased | marginal probability P[x] using
direct samples from P[s] sampling, inspired by polymer | thermodynamic integration
simulations

4. Compute the mutual information
1 N

I(S,X) = I
i=1

(InPlx;|s;1 - In P[x;])

Figure 2.2: The PWS framework to compute the mutual information between tra-
jectories in 4 steps. 1. Generate N input-output pairs from 2P[s, x]. 2. For
each input-output pair compute the trajectory likelihood [ x;|s;] using
Eq. (2.15). 3. Compute P[x;] for every output. This step differentiates
the different variants of PWS from each other. Direct PWS is presented
in this chapter, whereas RR-PWS and TI-PWS are described in Chap-
ter 3. 4. Using the likelihoods and the marginal probabilities from the
previous steps we can estimate the mutual information using Eq. (2.10).
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of f[z] with respect to the trajectory distribution P[z] is then

Flel)pe = f DI2] P21 (2). 2.5)

We write /' D|z] to denote a path integral over all possible trajectories of a given du-
ration. We estimate ( f[z]) »[,], by generating a large number of trajectories z;, ... , 2y
from P[z] and evaluating the corresponding Monte Carlo average

o1 Y
IN= N ;f(zi) (2.6)

which converges to the true mean in the limit N — oo.

Specifically, we want to estimate the conditional and the marginal entropy to
compute the mutual information. Let us imagine that we generate N input tra-
jectories sy, ..., 5 from the distribution [s]. Next, for every input s;, we generate
aset of K outputs x; , ..., X; g from P[x|s;]. Then, the Monte Carlo estimate for the
conditional entropy is

H(X|S8) = —f’D[s] ?[s]jﬂ[x] P[x|s]In P[x]|s]

= — <<11’1 ?[x|S]>?[x|s]>?[s] (27)

191 <
%—NZ;EZ;IH?[XL‘”SI'].
1= ]:

Secondly, for a given output x we generate M inputs s, ..., sy, according to P[s],
then we can obtain a Monte Carlo estimate for the marginal probability of the output
trajectory P[x]:

= (PlxlsD 2.8)
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The estimate for the marginal entropy is then given by

H(X) = —/D[x] P[x]1n P[x]

= —(ln?[x])j,[x]

O iln?[x-] (2.9)
N l
L X M

~ NZ Z x,|s ] .

In the last step we inserted the result from Eq. (2.8). In this estimate, the trajectories
X1, ..., Xy are sampled from P[x], i.e., by first sampling from P[s] and then from
P[x|s]. Finally, the mutual information is obtained by taking the entropy difference,
ie,I(8,X) = H(X) — H(X|S).

While this is the main idea behind PWS, it is computationally advantageous to
change the order of operations in the estimate. Specifically, computing the differ-
ence of two averages, leads to large statistical errors. We can obtain an improved
estimate by reformulating the mutual information as a single average of differences:

Plx|s]

I(8,X) = / Dls] / Dlx] Pls, x1In =5 (2.10)
= (In P[x|s] — I P[x]) pp, g -

This equation applies to all variants of PWS. They differ, however, in the way
P[x] is computed. In the brute-force version of PWS, called Direct PWS (DPWS),
we use Eq. (2.8) to evaluate the marginal probability [x]. DPWS indeed involves
two nested Monte Carlo computations, in which N pairs (s;, X;) are generated, and
for each output x;, M input trajectories {s} are generated from scratch to compute
P[x]. In Chapter 3, we present two additional variants of PWS where the brute-force
estimate of the marginal probability [x] is replaced by more elaborate schemes.
That said, DPWS is a conceptually simple, straightforward to implement, and exact
scheme to compute the mutual information.

Having explained the core ideas of our technique above, we will continue this sec-
tion with a review of the necessary concepts of master equations to implement PWS.
First, in Section 2.1.3, we derive the formula for the conditional probability P[x|s]
which lies at the heart of our technique. In Sections 2.1.3 and 2.1.4, we discuss how
trajectories are generated according to P[x|s] and P[s], which are the remaining
ingredients required for using DPWS. Then, in Chapter 3, we will present the two
other variants of PWS that improve on DPWS.
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2.1.3 Driven Markov Jump Process

In this chapter, we consider systems that can be modeled by a master equation and
are being driven by a stochastic signal. The master equation specifies the time evolu-
tion of the conditional probability distribution P(x, t|x,, t;) which is the probability
for the process to reach the discrete state x € Q at time ¢, given that it was at state
Xo € Q at the previous time . The state space Q is multi-dimensional if the system
is made up of multiple components and therefore x and x, can be vectors rather
than scalar values. Denoting the transition rate at time ¢ from state x to another
state x" # x by w;(x’, x), the master equation reads

GPS;, ) _ Z [w,(x, x")P(x', £) — w (X", x)P(x, )], (2.11)

x'eQ\{x}

where, for brevity, we suppress the dependence on the initial condition, i.e., P(x, t) =
P(x, t|xg, ty). By defining Q,(x’, x) = w;(x’, x) for x # x" and
Qt(x’ x) = - Z wt(x’ax) (212)
x'eQ\{x}
the master equation simplifies to
O0P(x, ¢ , ,
D - S Qe xR0 (2.13)

x'eQ

Note that by definition the diagonal matrix element Q,(x, x) is the negative exit rate
from state Xx, i.e. the total rate at which probability flows away from state x.

Using the master equation we can compute the probability of any trajectory. A
trajectory x is defined by a list of jump times ¢, ..., t,,_;, together with a sequence
of system states X, ..., Xx,,_;. The trajectory starts at time ¢, in state x, and ends
at time ¢, in state x,,_;, such that its duration is T = t,, — t,. At each time ¢t; (for
i = 1,...,n — 1) the trajectory describes an instantaneous jump x;_; — X;. The
probability density of x is

n-—1
Plx] = P(x) X (H Qs (xisxi—l))
i=1

) " (2.14)
X Hexp/dt Q¢ (xi—1, Xi—1) |
i=1

i-1

a product of the probability of the initial state P(x,), the rates of the n—1 transitions
Qy, (x;, x;_1), and the survival probabilities for the waiting times between jumps,

given by exp ftil_l dt Q;(xj_1,x;_1) fori=1,...,n.
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Computing the Likelihood P[x|s]

To compute the likelihood or conditional probability P[x|s] of an output trajectory x
for a given input trajectory s, we note that the input determines the time-dependent
stochastic dynamics of the jump process. Indeed, the transition rates at time ¢, given
by Q;(x’, x; s), depend explicitly on the input s(¢) at time ¢ and may even depend on
the entire history of s prior to ¢.

In the common case that every input trajectory s leads to a unique transition rate
matrix Q,(x’, x; s), i.e. the map s — Q,(-,-; §) is injective, the likelihood is directly
given by Eq. (2.14):

n—1
P[x|s] = P(xqls0) X (H Qy, (X3, Xy S))
i=1
n t; (2.15)
X H exp f dt Qi(Xi—1,X;_1;8)
i=1

i-1

where P(x,|sy) is the probability of the initial state x,, of the output given the initial
state of the input s, = s(t,).

The evaluation of the trajectory likelihood is at the heart of our Monte Carlo
scheme. However, numerically computing a large product like Eq. (2.15) very quickly
reaches the limits of floating point arithmetic since the result is often either too large
or too close to zero to be representable as a floating point number. Thus, to avoid
numerical issues, it is vital to perform the computations in log-space, i.e. to compute

T
In P[x|s] = In P(xy|sg) +/ dt L,;[s, x] (2.16)
t

0

where

n—1
L8, x] = Q:(x(t), x(¢t); 8) + Z 5t —t;) In Qu(x;, xi_158). (2.17)
i=1

The computation of the log-likelihood In P[x|s] for given trajectories s and x ac-
cording to Egs. (2.16) and (2.17) proceeds as follows:

« At the start of the trajectory we compute the log-probability of the initial con-
dition In P(x|sg),

« for every jump x;_; — X; in x (at time ¢;) compute the log jump propensity
In Qti(xi, X;_1;8), and

21



2 Path Weight Sampling

« for every interval (¢;_;,t;) of constant output value x(t) = x;_; between two
jumps of x, we compute ftil_l dt Q;(x;_1,x;_1;8). This integral can be per-
formed using standard numerical methods such as the trapezoidal rule, which
is also exact if Q,(x(t), x(t); s) is a piecewise linear function of ¢.

The sum of the three contributions above yields the exact log-likelihood In P[x|s]
as given in Eq. (2.16).

The algorithm to compute the log-likelihood In [ x|s] is both efficient and straight-
forward to implement, being closely related to the standard Gillespie algorithm. The
only term in Eq. (2.16) that cannot be directly obtained from the master equation is
In P(xy|so)- This quantity depends on the initial distribution of the system of inter-
est.

Our scheme can be applied to any system with a well-defined (non-equilibrium)
initial distribution P(sy, x() as specified by, e.g. the experimental setup. Most com-
monly though, one is interested in studying information transmission for systems
in steady state. Then, the initial condition P(sy, x) is the stationary distribution of
the Markov process. Depending on the complexity of the system, this distribution
can be found either analytically from the master equation [201, 208] (possibly using
simplifying approximations [204, 85]), or computationally from stochastic simula-
tions [65].

Sampling from P[x|s]

Standard kinetic Monte Carlo simulations naturally produce exact samples of the
probability distribution P[x|s] as defined in Eq. (2.15). That is, for any signal trajec-
tory s and initial state x, drawn from P(x,|sy) we can use the Stochastic Simulation
Algorithm (SSA) or variants thereof to generate a corresponding trajectory x. The
SSA propagates the initial condition x,, t, forward in time according to the transi-
tion rate matrix Q,(-; s). In the standard Direct SSA algorithm [65] this is done by
alternatingly sampling the waiting time before the next transition, and then select-
ing the actual transition.

The transition rates Q,(x’, x; s) of a driven master equation are necessarily time-
dependent since they include the coupling of the jump process to the input trajec-
tory s, which itself varies in time. These time-varying transition rates need to be
accounted for in the SSA. While most treatments of the SSA assume that the transi-
tion rates are constant in time, this restriction is easily lifted. Consider step i of the
Direct SSA which generates the next transition time ¢;; = t;+At;. For time-varying
transition rates the distribution of the stochastic waiting time At; is characterized
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by the survival function

ti+T
Si(t) =P(At; > 1) = exp/ dt Q:(x;, x;38). (2.18)
t

i

The waiting time can be sampled using inverse transform sampling, i.e. by generat-
ing a uniformly distributed random number u € [0, 1] and computing the waiting
time using the inverse survival function At; = S;!(u). Numerically, computing the
inverse of the survival function requires solving the equation

ti+At;
Inu= f dt Q;(x;, x;; 8) (2.19)
t

i

for the waiting time At;. Depending on the complexity of Q,(x;, x;|s), this equa-
tion can either be solved analytically or numerically, e.g. using Newton’s method.
Hence, this method to generate stochastic trajectories is only truly exact if we can
solve Eq. (2.19) analytically. Additionally, in some cases more efficient variants of
the SSA with time dependent rates could be used [144, 182].

2.1.4 Input Statistics

For our mutual information estimate, we need to be able to draw samples from the
input distribution 2[s]. Our algorithm poses no restrictions on 2[s] other than the
possibility to generate sample trajectories.

For example, the input signal may be described by a continuous-time jump pro-
cess. One benefit is that it is possible to generate exact realizations of such a pro-
cess (using the SSA) and to exactly compute the likelihood P[x|s] using Eq. (2.16).
Specifically, the likelihood can be exactly evaluated because the transition rates
Q;(+,-; s) for any input trajectory s, while time-dependent, are piece-wise constant.
This implies that the integral in Eq. (2.16) can be evaluated analytically without ap-
proximations. Similarly, for piece-wise constant transition rates, the inverse func-
tion of Eq. (2.19) can be evaluated directly such that we can sample exact trajectories
from the driven jump process. As a result, when both input and output are described
by a master equation, PWS is a completely exact Monte Carlo scheme to compute
the mutual information.

However, the techniques described here do not require the input signal s to be
described by a continuous-time jump process, or even to be Markovian. The input
signal can be any stochastic process for which trajectories can be generated numer-
ically. This includes continuous stochastic processes that are found as solutions to
stochastic differential equations [91].
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2.2 Integrating Out Internal Components

So far the output trajectory x has been considered to correspond to the trajectory
of the system in the full state space Q). Concomitantly, the method presented is a
scheme for computing the mutual information between the input signal s and the
trajectory x, comprising the time evolution of all the n components in the system,
X1, X2, ...,X". Each component X I jtself has a corresponding trajectory xi, such
that the full trajectory can be represented as a vector x = (x!,...,x"). It is indeed
also the conditional probability P[x|s] = P[x!,...,x"|s] and the marginal proba-
bility P[x] = P[x!,...,x"] of this vector in the full state space that can be directly
computed from the master equation. In fact, it is this vector, which captures the
states of all the components in the system, that carries the most information on the
input signal s, and thus has the largest mutual information. However, typically
the downstream system cannot read out the states of all the components X ., Xm
Often, the downstream system reads out only a few components or often even just
one component, the “output component” X". The other components then mainly
serve to transmit the information from the input s to this readout X”. From the per-
spective of the downstream system, the other components are hidden. The natural
quantity to measure the precision of information processing is then the mutual in-
formation I(8; X") between the input s and the output component’s trajectory x”,
not I(8; X). The question then becomes how to compute P[x"] and P[x"|s], from
which I(8; X") can be obtained. Here, we present a scheme to achieve this.

As an example, consider a chemical reaction network with species X X
Without loss of generality, we will assume that the n-th component is the output
component, X" = X™. The other species X?, ..., X"~! are thus not part of the out-
put, but only relay information from the input signal s to the output signal x™. To
determine the mutual information I(S, X) we need P[x"|s], where x" is the trajec-
tory of only the readout component X". However, from the master equation we can
only obtain an expression for the full conditional probability P[x!, ..., x"|s] of all
components. To compute the value of P[x"|s], we must perform the marginaliza-
tion integral

P[x"|s] =fD[x1]---fD[x"‘1] Plxh, ..., x"s]. (2.20)

We can compute this integral using a Monte Carlo scheme as described below and
use the resulting estimate for [x"|s] to compute the mutual information using our
technique presented in Section 2.1.2.

The marginalization of Eq. (2.20) entails integrating out degrees of freedom from
aknown joint probability distribution. In Eq. (2.8) we solved the analogous problem
of obtaining the marginal probability ’[x] by integrating out the input trajectories
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through the integral P[x]| = fds P[s,x] = [ ds P[s]P[x]|s]. As described in Sec-
tion 2.1.2, the integral from Eq. (2.8) can be computed via a Monte Carlo estimate
by sampling many input trajectories from P[s] and taking the average of the cor-
responding conditional probabilities P[x|s;]. We will show that in the case where
there is no feedback from the readout component back to the other components, a
completely analogous Monte Carlo estimate can be derived for Eq. (2.20).

More specifically, we can evaluate Eq. (2.20) via a direct Monte Carlo estimate un-
der the condition that the stochastic dynamics of the other components X1, ..., X1
are not influenced by X" (i.e., no feedback from the readout). Using the identity

Plxl, ..., x"s] = P[x}, ..., x"7s] P[x"|x}, ..., xP 5] (2.21)
to rewrite the integrand in Eq. (2.20), we are able to represent the conditional prob-
ability P[x"|s] as an average over the readout component’s trajectory probability

Plx"|s] = (P[x"|x{, ..., x]!

L s]>5’[x1,...,x”—1|s] ' (2'22)

Thus, assuming that we can evaluate the conditional probability of the readout

given all the other components, ?[x”|xi1, ,x;‘_l, s], we arrive at the estimate

M
P[x"|s] ~ AL/I D Plx"xl, . X s] (2.23)
i=1

where the samples x},...,x""! fori = 1,...,M are drawn from P[x!, ..., x"!s].
Notice that the derivation of this Monte Carlo estimate is fully analogous to the
estimate in Eq. (2.8), but instead of integrating out the input trajectory s we integrate
out the component trajectories x*, ..., x"*~ 1.

To obtain P[x"|x{, ... ,xi”_l, s] in Egs. (2.22) and (2.23), we note that, in absence
of feedback, we can describe the stochastic dynamics of the readout component
X™ as a jump process with time-dependent transition rates whose time-dependence
arises from the trajectories of the other components x!, ..., x"~! and the input input
s. In effect, this is a driven jump process for X", driven by all upstream components
X!, ...,X""! and the input signal. Specifically, denoting u = (x!,...,x""1,s) as
the joint trajectory representing the history of all upstream components as well as
the input signal, we can, as explained in Section 2.1.3, write the time dependent
transition rate matrix Q,(-|u) for the stochastic dynamics of X" and use Eq. (2.15)
to compute P[x"u] = P[x"|x},...,x"1, s]. Using Eq. (2.23), this then allows us
to compute P[x"|s].

Finally, to compute the mutual information I(8; X"), e.g. using the estimate in
Eq. (2.10), we additionally need to evaluate the marginal output probability P[x"].
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This requires us to perform one additional integration over the space of input tra-
jectories s:

Plx"] = fﬂ)[s] P[s]|P[x"|s]

(2.24)
= (.’P[x”|s]>j,[s] .
The corresponding Monte Carlo estimate is
LN
P[x"] ~ N > Plx"s;]
i=1
N (2.25)
o Z i Z Plx"xl;, .., x5 81]
i=1 j=1
where the input trajectories s; follow P[s] and the intermediate components (xl-lj, s xl-”j‘1 ,

fori=1,..,Nand j = 1,..., M, follow P[x}, ..., x""!|s;].

In summary, the scheme to obtain P[x"|u] in the presence of hidden interme-
diate components is analogous to that used for computing P[x] from P[x|s]. In
both cases, one needs to marginalize a distribution function by integrating out com-
ponents. Indeed, the schemes presented here and in Section 2.1.2 are bona fide
schemes to compute the mutual information between the input s and either the
trajectory of the output component x" or the full output x. However, when the tra-
jectories are sufficiently long or the stochastic dynamics are sufficiently complex,
then the free-energy schemes of Chapter 3 may be necessary to enhance the effi-
ciency of computing the marginalized distribution, P[x] or P[x"|s].

2.3 Dealing with Feedback

In principle all physical information processing systems exhibit feedback. The phys-
ical interaction needed to measure the input signal necessarily affects the incoming
signal, and indeed, it follows that no information can be extracted from the input
signal without any perturbation of the input dynamics. Often, it is assumed that the
amplitude of such perturbations is comparatively small and thus that the feedback
can safely be ignored.

Indeed, the PWS scheme was derived with the assumption of no feedback. In this
section, we drop the assumption and will explicitly consider systems where the pro-
duced output perturbs the input, i.e. systems where the output feeds back onto the
input. We will first discuss the additional problems that arise when computing the
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2.3 Dealing with Feedback

mutual information for a system with feedback, and subsequently present a modi-
fied version of PWS that can be used to compute the trajectory mutual information
for these systems.

2.3.1 Computing the Mutual Information with Feedback between
Input and Output

PWS requires the computation of the trajectory likelihood [x|s], a quantity that
is not readily available for systems with feedback. Indeed, as already mentioned
in Section 2.1.3, for a given input trajectory s, the output dynamics are no longer
described by a Markov process in a system with feedback, and therefore we cannot
find an expression for P[x|s] based on the master equation. This implies that for
systems with feedback, PWS schemes cannot be used without modification. While
it is generally not possible to derive an expression for the conditional probability
P[x|s] in systems with feedback, we often still can compute the joint probability
density P[s,x] instead. Based on this quantity, we will present a modified PWS
scheme to compute the mutual information for systems with feedback.

Specifically, since PWS is a model-based approach to compute the mutual infor-
mation, when there is feedback from the output back to the input, we require a
complete model of the combined system. Specifically, such a model must provide
an expression for the joint probability P[s, x], describing the input dynamics and
the interaction between input and output, including the feedback.

An estimate of the mutual information that only relies on the computation of joint
probability densities P[s, x] can be obtained by expressing the mutual information
as
Pls, x]

I(S,x) = /D[S] f D[X] ?[S, JC] In W . (226)
Thus, the PWS scheme with feedback consists of the computation of
Pls, x] >
I(8,X) = <1n —_— 2.27
(5.3 = (I 5eron) (2.27)

which we want to estimate via a Monte Carlo average using samples from P[s, x].
We see that while we don’t need to evaluate the likelihood P[x|s], we now need to
explicitly compute the joint density P[s, x], and two marginal densities, P[s] and
P[x], for each Monte Carlo sample (s,x) ~ P[s,x]. While the joint density can
be evaluated directly by assumption, each of the marginalized densities can only be
computed using a nested Monte Carlo estimate.
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Specifically, for PWS with feedback, we need to compute two marginalization in-
tegrals per Monte Carlo sample:

Pls] = fl)[x] Pls, x], (2.28)

and

Plx] =f.’D[s] Pls,x]. (2.29)

However, these marginalization integrals cannot be directly computed with the tech-
niques described so far. Therefore, in the following subsection, we discuss how to
compute marginalization integrals for systems with feedback.

Additionally, as discussed in Section 2.2, we may also need to integrate out inter-
nal components of the master equation even when the output feeds back onto these
internal components. The technique discussed below can also be used in this case
as a way to compute the marginalization integral in Eq. (2.20).

2.3.2 Marginalization Integrals for Systems with Feedback

Computing marginalization integrals in systems with feedback is harder than it is
in the case without feedback. Specifically, we will show that it is not obvious how
apply the Monte Carlo estimate from Eq. (2.8) to systems with feedback. Neverthe-
less, if the system with feedback can be decomposed into a non-interacting part and
an interacting part that includes the feedback, it is often still possible to compute
marginalization integrals. Below, we sketch the steps that are necessary in order to
compute marginalization integrals for systems with feedback using such a decom-
position.
For concreteness, we discuss how to compute

Plx] = fi)[s] Pls, x] (2.30)

as the prototype for a marginalization integral we want to compute. Unlike before,
we now assume that x feeds back onto s. That means that we have access to the joint
distribution’s density [s, x], but not to the marginal density [ s] or the conditional
density P[x|s].

Formulated in the language of statistical physics, marginalization is equivalent
to the computation of the free-energy difference AF|[x]| = F[x] — Fy[x] between
two ensembles described by potentials U[s,x] and U,[s,x]. Previously, for sys-
tems without feedback, we chose these potentials to be U,[s,x] = —InP[s] and
U[s,x] = —InP[s, x] with the idea that U is the potential corresponding to the ac-
tual system and U, is the potential of a reference system with known free energy.
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2.3 Dealing with Feedback

Then, by computing the free-energy difference between the reference system and
the actual system, we could compute the marginal probability P[x].

However, in systems with feedback we face a problem. Note that the actual sys-
tem is still described by the potential U[s,x] = —InP[s, x], even with feedback.
Yet, for the reference system described by U,[s, x] we cannot make the same choice
as before, because the previous choice involved the marginal probability [ s] which
is not available with feedback.

Instead, we have to find an alternative expression for U,[s,x]. To construct a
suitable reference potential, we can use a decomposition of the full potential into
three parts

Uls,x] = Ug[s] + Ux[x] + AU[s, x] (2.31)

where AU[s, x] describes the features of the system that induce interaction, or cor-
relation, between s and x. The first two terms of the potential above, Ug[s]+ Ux[x],
therefore describe a non-interacting version of the system, where the input and out-
put are fully independent of each other. We want to use the potential of that non-
interacting version as our expression for U, i.e. Uy[s,x] = Ug[s] + Ux[x]. To be
able to do so, we require that the partition function (normalization constant)

Zolx] = f D[s] e~ Uolsx] (2.32)

is known. In other words, we need to choose the decomposition in Eq. (2.31) such
that the partition function Eq. (2.32) is known either analytically or numerically. If
such a decomposition is found, we can compute the marginal probability P[x] from
the difference in free energy AF[x] between U and Uj:

—InP[x] = Fx] = Fo[x] + AF[x] (2.33)

where F, = —In Zy[x] is known. Because we have a known expression for U [s, x],
the free-energy difference A¥|[x] can now be computed using any of the techniques
described in Section 3.1.

As an example for finding a decomposition like Eq. (2.31), let us consider the case
where the joint system of input and output is described by a single master equation,
i.e. we have a master equation with two components, S which represents the input,
and X which represents the output. In such a system, information is transmitted if
there exist transitions that change the copy number of X with a rate that depends
on the copy number of S. In terms of chemical reactions, S — S + X is an example
for such a transition. In turn, this system exhibits feedback if at least one of the
transitions that change the copy number of S has a rate that depends on X, as for
example with the reaction S + X — X. Note that with such reactions, the dynamics
of S depend on the current copy number of X, and therefore we cannot evolve S
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trajectories independently of X trajectories, a consequence of feedback. Both of the
reactions S — S + X and S + X — X introduce correlations between the S and X
trajectories.

In a non-interacting system, such interactions between the input and output must
be absent. Thus, a non-interacting version of the reaction system contains no single
reaction that involves both S and X. We will now describe how we can use that non-
interacting version of the reaction system, to obtain the reference potential U[s, x].
Since the input and output trajectories are completely independent in the non-
interacting system, we can express the joint distribution’s probability density as the
product of the individual component’s trajectory densities, y[s, x| = Pp[s] Po[x]-
Note that #[s] and #y[x] should not be confused with the marginal probabilities
P[s] and P[x] of the interacting version of the reaction system, which must be com-
puted using a marginalization integral. Since in the non-interacting version both
S and X obey independent dynamics which are characterized by individual mas-
ter equations, both #y[s] and #y[x] can be individually computed using Eq. (2.14).
Thus, in this case, the non-interacting potential is Uy[s,x] = —In Py[s] — In Py[x]
and, since the probability densities #y[s]| and #[x] are normalized, the correspond-
ing partition function is Z, = 1. Hence, for this reaction system, we can straightfor-
wardly define a non-interacting version that can be used to obtain the reference po-
tential Uy[s, x]. Using the techniques described in Section 3.1, we can then compute
the free-energy difference between Uy[s, x] and U[s,x] = —In P[s, x], where the
latter potential describes the dynamics of the fully interacting system. Specifically,
we can compute the marginal probabilities P[s], P[x] pertaining to the interacting
system which are required for the mutual information estimate in Eq. (2.27).

In summary, for systems with feedback, we can compute marginalization inte-
grals by specifying a reference potential U,[s, x] by finding a non-interacting ver-
sion of the system. However, barring a decomposition into interacting and non-
interacting potentials, there is generally no unambiguous choice of the reference
potential Uy[s,x] to compute the marginal probability P[x]. In fact, the optimal
reference potential Uy [s, x] is likely to be system-specific. Still, if a suitable expres-
sion for Uy[s,x] can be found, we can make use of the techniques developed in
Section 3.1 to compute marginal probability P[x].

2.4 Discussion

In this chapter, we have described a general, practical, and flexible method that
makes it possible to compute the mutual information between trajectories exactly.
PWS is a Monte Carlo scheme based on the exact computation of trajectory proba-
bilities. We showed how to compute exact trajectory probabilities from the master
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equation and thus how to use PWS for any system described by a master equation.
Since the master equation is employed in many fields and in particular provides
an exact stochastic model for well-mixed chemical reaction dynamics, PWS is very
broadly applicable.

However, it must be noted that PWS cannot be used to directly obtain the mu-
tual information between trajectories from experimental data, in contrast to model-
free (yet approximate) methods such as K-nearest-neighbors estimators [81, 94],
decoding-based information estimates [59], or schemes that compute the mutual
information from the data within the Gaussian framework [107]. PWS requires a
(generative) model based on a master equation or Langevin equation. Yet, in Chap-
ter 6, we will show how PWS can be combined with machine learning to obtain the
rate directly from time-series data.

We have applied PWS to compute the mutual information rate in steady state, but
PWS can be used equally well to study systems out of steady state. For such systems
a (non-)equilibrium initial condition P(sy, x,) must be specified in addition to the
stochastic dynamics of input trajectories P[s]. These distributions are defined by
the (experimental) setup and lead to a well-defined output distribution P[x] when
the system is coupled to the input. Thus, a steady state is no prerequisite for the
application of PWS to study the trajectory mutual information.

Overall, PWS is a general framework for computing the mutual information be-
tween trajectories. Because of its flexibility and simplicity, we envision that it will
become an important and reliable tool for studying information transmission in dy-
namic stochastic systems.
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3 More Efficient Variants of PWS

In the previous chapter, we introduced Path Weight Sampling (PWS), a computational
approach capable of providing exact information rate estimates for any stochastic sys-
tem. However, the direct implementation of PWS becomes inefficient for complex sys-
tems and long trajectories due to the high dimensionality of trajectory space. To over-
come these limitations, we present two improved PWS variants in this chapter, in-
spired by free-energy estimation techniques from statistical physics. First, Rosenbluth-
Rosenbluth PWS (RR-PWS) leverages computational strategies developed for polymer
chemical potential calculations, enhancing efficiency for sampling in trajectory spaces.
Second, Thermodynamic Integration PWS (TI-PWS) applies thermodynamic integra-
tion combined with trajectory space MCMC sampling, inspired by transition path sam-
pling. We benchmark these methods using a simple coupled birth-death model, com-
paring the effectiveness of all three PWS variants against analytical results and the
Gaussian approximation.

The contents of this chapter have been published in Phys. Rev. X 13, 041017 (2023) [152].
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To quantify information transmission, be it in a natural or engineered informa-
tion processing system, we need to be able to compute the mutual information
between input and output trajectories, from which the information transmission
rate can be obtained. However, because of the high dimensionality of the trajec-
tory space, computing the mutual information between trajectories is exceedingly
difficult, if not impossible, because the conventional non-parametric binning ap-
proach to estimate the required trajectory probability distributions cannot be used.
Indeed, except for very simple models, the mutual information between trajectories
is typically computed using approximations that are often uncontrolled. In the pre-
vious chapter, we introduced a computational scheme called Path Weight Sampling
(PWS), which, for the first time, makes it possible to compute the information rate
exactly, for any stochastic system.

Yet, the scheme presented in that chapter, Direct PWS, becomes inefficient for
more complex systems and longer trajectories. The reason is that the number of
possible trajectories increases exponentially with trajectory length, leading to a cor-
responding increase in the variance of the estimate. Hence, for long trajectories the
PWS estimate may prove to be computationally infeasible. To address this issue, we
describe two improved variants of PWS in this section, both based on free-energy
estimators from statistical physics.

Specifically, in Section 3.2 we present Rosenbluth-Rosenbluth PWS (RR-PWS)which
exploits the observation that the computation of P[x] is analogous to the calculation
of the (excess) chemical potential of a polymer, for which efficient methods have
been developed [167, 69, 55]. In Section 3.3, we present Thermodynamic Integra-
tion PWS (TI-PWS) which is based on the classic free energy estimation technique
of thermodynamic integration [54, 62, 127] in conjunction with a trajectory space
MCMC sampler using ideas from transition path sampling [19].

In Section 3.4 we apply PWS to a well-known model system. It consists a simple
pair of coupled birth-death processes which allows us to test the efficiency of the
three PWS variants, as well as to compare the PWS results with analytical results
from the Gaussian approximation [194] and the technique by Duso and Zechner
[46].

3.1 Marginalizing in Trajectory Space

PWS evaluates the mutual information I(S, X) from the marginal entropy H(X') and
the conditional entropy H(X|S), see Eq. (2.2). Of these two entropies, the con-
ditional one can be efficiently computed using the scheme described in the pre-
vious chapter, and as used in DPWS. However, obtaining the marginal entropy
H(X) = — fD[x] P[x]InP[x] is much more challenging. Indeed, the compu-
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tationally most expensive part of Direct PWS is the evaluation of the marginaliza-
tion integral P[x;] = f/ D[s]P[s, x;] which needs to be performed for every sample
X1, ...,Xy. Consequently, the computational efficiency of this marginalization is
essential for the overall performance.

Marginalization is a general term to denote an operation where one or more vari-
ables are integrated out of a joint probability distribution. For instance, we obtain
the marginal probability distribution P[x] from P[s, x| by computing the integral

Plx] =f2)[s] Pls,x] = fl)[s] Ps]|P[x]|s]. 3.1)

In DPWS, we use Eq. (2.8) to compute P[x] which involves generating indepen-
dent input trajectories from P[s]|. However, this this is not the optimal Monte Carlo
technique to perform the marginalization. The generated input trajectories are in-
dependent from the output trajectory x. Thus, we ignore the causal connection
between s and x, and we typically end up sampling trajectories s* whose likeli-
hoods P[x|s*] are very small. Then, most sampled trajectories have small integral
weights, and only very few samples provide a significant contribution to the aver-
age. The variance of the result is then very large because the effective sample size is
much smaller than the total sample size. The use of [s] as the sampling distribu-
tion is thus only practical in cases where the dependence of the output on the input
is not too strong. It follows that this sampling scheme works best when the mutual
information is not too large *.

This is a well known Monte Carlo sampling problem and a large number of tech-
niques have been developed to solve it. The two variants of our scheme, RR-PWS
and TI-PWS, both make use of ideas from statistical physics for the efficient com-
putation of free energies.

Indeed, the mutual information I(8, X) precisely quantifies how strong the statistical dependence
is between the trajectory-valued random variables 8 and X. From its definition I(8,X) =
H(8) —H(8|X) we can understand more clearly how this affects the efficiency of the Monte Carlo
estimate. Roughly speaking, H(8) is related to the number of distinct trajectories s that can arise
from the dynamics given by P[s], while H(8|X) is related to the number of distinct trajectories
s that could have lead to a specific output x, on average. Therefore, if the mutual information is
very large, the difference between these two numbers is very large, and consequently the number
of overall distinct trajectories is much larger than the number of distinct trajectories compatible
with output x. Now, if we generate trajectories according to the dynamics given by P[s], with
overwhelming probability we generate a trajectory s which is not compatible with the output tra-
jectory x, and therefore P[x|s] ~ 0. Hence, the effective number of samples M. is much smaller
than the actual number of generated trajectories M, i.e. M.z << M. We therefore only expect the
estimate in Eq. (2.8) to be reliable when computing the mutual information for systems where it is
not too high. Thus, strikingly, the difficulty of computing the mutual information is proportional
to the magnitude of the mutual information itself.
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P[s, x] e~ Ulsx]
P[s] zol[x] e~ Uols]
P[s)x] z[lx] —Uls.x]
1 Zo[x]
Plx] Z[x]
Plx|s] e~ AUlsx]

Table 3.1: Translation to the notation of statistical physics. The definitions of & and
U, that are used here are given in Egs. (3.2) and (3.6).

To understand how these ideas can be applied to compute the marginal proba-
bility [x], it is helpful to rephrase the marginalization integral in Eq. (3.1) in the
language of statistical physics. In this language, [x] corresponds to the normaliza-
tion constant, or partition function, of the Boltzmann distribution for the potential?

Uls,x] = —InP[s, x]. 3.2)

In Eq. (3.2), s is interpreted as a variable in the configuration space, while x acts
as an auxiliary variable, i.e., a parameter. Note that both s and x still represent
trajectories. For this potential, the partition function is given by

2[x] = f D[s] e~ Ulsx] (3.3)

The integral only runs over the configuration space, i.e. we integrate only with re-
spect to s. By inserting the expression for U[s, x|, we see that the partition function
is exactly equal to the marginal probability of the output, i.e. Z[x] = P[x]. The free
energy is given by

Flx]=—-InZ[x] = —InP[x]. (3.4)

Note that while the distribution exp(—U[s, x])/Z[x] resembles the equilibrium distribution of a
canonical ensemble from statistical mechanics, this does not imply that we are studying systems in
thermal equilibrium. Indeed, PWS is used to quantify information transmission in systems driven
out of equilibrium by the input signal. Thus, the notation introduced in this section is merely
a mathematical reformulation of the marginalization integral to make the analogy to statistical
physics apparent. We assign no physical meaning to the potentials and free energies. Also note
that we set kT = 1 since temperature is irrelevant here.
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In statistical physics it is well known that the free energy cannot be directly mea-
sured from a simulation. Instead, one estimates the free-energy difference

Z[x]
Zo[x]

AF[x] = F[x] - Fo[x]=—1n (3.5)

between the system and a reference system with known free energy Fy[x]. The
reference system can be freely chosen and is usually defined using a Boltzmann
distribution for a convenient reference potential U,[s,x]. In our case, a natural
choice of reference potential is

Upls,x] = —InP[s] (3.6)

with the corresponding partition function being simply

Zolx] = fﬂ)[s] Pls]=1. (3.7)

The reference free energy therefore is zero (#y[x] = —InZy[x] = 0). Hence, the
free-energy difference is

AF[x] = F[x] = —InP[x]. (3.8)

Note that in our case the reference potential U,[s, x] = — In P[s] does not depend

on the output trajectory x, i.e. Uy[s,x] = Uy[s]. It describes a non-interacting ver-
sion of our input-output system where the input trajectories evolve independently
of the fixed output trajectory x.

What is the interaction between the output x and the input trajectory ensemble?
We define the interaction potential AU[s, x| through

U[s, x] = Up[s] + AU[s, x]. 3.9

The interaction potential makes it apparent that the distribution of s corresponding
to the potential U[s, x] is biased by x with respect to the distribution corresponding
to the reference potential U,[s]. By inserting the expressions for U,[s] and U[s, x|
into Eq. (3.9) we see that

AU[s,x] = —InP[x|s]

T (3.10)
= —lnP(x0|so)—/ dt L[s, x]
0

where £,[s, x] is given by Eq. (2.16) and can be directly computed from the master
equation. This expression illustrates that the interaction of the output trajectory x
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with the ensemble of input trajectories is characterized by the trajectory likelihood
Plx|s].

To summarize, in this section we have introduced notation (see Table 3.1) show-
ing that computing a marginalization integral is equivalent to the computation of a
free-energy difference. This picture allows us to distinguish between two ensem-
bles for s, the non-interacting ensemble distributed according to exp(—U,[s]) =
P[s], and the interacting ensemble distributed according to exp(—U[s, x]) « P[s|x].
With these notions we can rewrite the brute force estimate in Direct PWS (Chap-
ter 2) as

_ Zlx]
B Zolx]

P[x] = (emAUlsxl), (3.11)
where the notation (---), refers to an average with respect to the non-interacting
ensemble. By inserting the expressions for U, and A, it is easy to verify that this
estimate is equivalent to Eq. (2.8).

The more advanced variants of PWS introduced below leverage the analogy with
statistical physics to improve the efficiency of marginalization. RR-PWS draws ideas
from soft condensed matter simulations by recognizing that Eq. (3.5) has the same
form as the excess chemical potential of a polymer for which efficient computa-
tion techniques have been developed [167, 122]. Meanwhile, TI-PWS is inspired by
Transition Path Sampling (TPS) for sampling rare trajectories [19] and uses thermo-
dynamic integration for free-energy estimation.

3.2 RR-PWS

In Rosenbluth-Rosenbluth PWS we compute the free-energy difference AF between
the ideal system U, and U in a single simulation just like in the brute force method.
However, instead of generating s trajectories in an uncorrelated fashion according
to exp(—Uy[s]) = P[s], we bias our sampling distribution towards exp(—U[s, x])
P[s|x] to reduce the sampling problems found in DPWS.

The classical scheme for biasing the sampling distribution in polymer physics is
due to Rosenbluth and Rosenbluth [155] in their study of self-avoiding chains. A
substantial improvement of the Rosenbluth algorithm was achieved by Grassberger,
by generating polymers using pruning and enrichment steps, thereby eliminating
configurations that do not significantly contribute to the average. This scheme is
known as the pruned-enriched Rosenbluth method, or PERM [69]. While PERM is
much more powerful than the standard Rosenbluth algorithm, its main drawback
is that it requires careful tuning of the pruning and enrichment schedule to achieve
optimal convergence. Therefore we have opted to use a technique that is similar in
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Figure 3.1: Illustration of one step of the bootstrap particle filter in RR-PWS. We
start with a set of trajectories sﬁ)’i_l] with time span [y, 7;_; ] (left panel).
In the next step we propagate these trajectories forward in time to 7;, ac-
cording to P[s] (central panel). Then we resample the trajectories ac-
cording to the Boltzmann weights of their most recent segments, effec-
tively eliminating or duplicating individual segments. An example out-
come of the resampling step is shown in the right panel where the bot-
tom trajectory was duplicated and one of the top trajectories was elim-
inated. These steps are repeated for each segment, until a set of input
trajectories of the desired length is generated. The intermediate resam-
pling steps bias the trajectory distribution from P[s] towards P[s|x].

spirit to PERM but requires less tuning, the bootstrap particle filter [67]. We will
describe how to use PWS with a particle filter below. That said, we want to stress
that the particle filter can easily be replaced by PERM or other related methods
[145]. Also schemes inspired by variants of Forward Flux Sampling 3, 12] could be
developed.

3.2.1 Bootstrap Particle Filter

In the methods discussed above, a polymer is grown monomer by monomer. In a
continuous-time Markov process this translates to trajectories being grown segment
by segment. To define the segments, we choose a time discretization 0 < 7; < 7, <
-+ < T,_1 < T. Thus, each trajectory s of duration T consists of n segments where
we denote the segment between 7; and 7; by s[; ;) (we define 7, = 0 and 7, = T).
The particle filter uses the following procedure to grow an ensemble of trajectories
segment by segment:

1. Generate M starting points s, ..., s) according to the initial condition of the
input signal P(s).

2. Iterate fori=1,...,n:
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40

a)

b)

c)

Starting with an ensemble of M partial trajectories of duration 7;_, (ifi =

1 an ensemble of starting points) which we label sﬁ),i_l] fork=1,...,M:
M
(Sto,i-1ps =+ 8fo,6-11) (312)

propagate each trajectory (or each starting point) forward in time from
7;_1 to t;. Propagation is performed according to the natural dynamics
of s, i.e. generating a new segment s’[‘i_l,i] with probability

en — k .
pr (k) = P sfi_y glsfo,on] = ¢ talsfi-va (3.13)
fork=1,..,M.

Compute the Boltzmann weight
Uf = AU[sf_y 5 ¥[i-1i1] (3.14)

of each new segment. This Boltzmann weight of a segment from 7;_; to
7; can be expressed as

T
[]ik = —511' In P(XO|S0) - f dt [:t[sﬁ_l,i],x[i_l’i]] s (3.15)
T

i-1

see Eq. (3.10), and is therefore straightforward to compute from the mas-
ter equation.

Sample M times from the distribution

i
piEect(k) = (3.16)
i
where the Rosenbluth weight w; is defined as
M k
w; = Z e Ui, (3.17)
k=1

This sampling procedure yields M randomly drawn indices ¢}, ..., M.
Each €lk is an index that lies in the range from 1, ..., M and that points
to one of the trajectories that have been generated up to 7;. To continue
the sampling procedure, we relabel the indices such that the resampled

k
set of trajectories is defined by 5'[‘0’1.] « s[eé’i] for k = 1,...,M. The list

(5%0,1.], ,51[‘3,1.]) is subsequently used as the input for the next iteration
of the algorithm.
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The normalized Rosenbluth factor of the final ensemble is then given by
n W
W = —. 3.18
g v (3.18)

As shown in Section 3.2.3, we can derive an unbiased estimate for the desired ratio
Z[x]/Zy[x] = P[x] based on the Rosenbluth factor:

Plx] = P(xy) W (3.19)

with P(x,) being the probability of the initial output x,. The particle filter can there-
fore be integrated into the DPWS algorithm to compute the marginal density P[x],
substituting the brute-force estimate given in Eq. (2.8). We call the resulting algo-
rithm to compute the mutual information RR-PWS.

3.2.2 Intuitive Justification of the Algorithm

First note that steps 1 and 2(a) of the procedure above involve just propagating M
trajectories in parallel, according to P[s] = exp(—Uy[s]). The interesting steps are
2(b-c) where we eliminate or duplicate some of the trajectories according to the
Boltzmann weights of the most recent segment. Note, that in general the list of in-
dices (¢}, ..., 6?’[ ) that are sampled in step 2(c) will contain duplicates (€g‘ = 4"
for k # k'), thus cloning the corresponding trajectory. Concomitantly, the indices
¢}, ...,#M may not include every original index 1, ... , M, therefore eliminating some
trajectories. Since indices of trajectories with high Boltzmann weight are more
likely to be sampled from Eq. (3.16), this scheme biases the sampling distribution
towards trajectories with large Boltzmann weight, ensuring that we are only spend-
ing computational effort on propagating trajectories which contribute significantly
to the marginalization integral.

Hence, at its heart, the particle filter is an importance sampling scheme. It pro-
duces samples that are biased towards the ideal importance sampling distribution
exp(—Uy[s]) exp(—AU[s, x]), i.e., towards to the Boltzmann distribution of the in-
teracting ensemble. The Rosenbluth factor W represents the importance sampling
weight which would be required to correct for the sampling bias when computing
averages using the sampled trajectories. Importantly for our case, the Rosenbluth
factor can also be used to estimate the marginal probability [x]. For illustration
of the algorithm, one iteration of the particle filter is presented schematically in
Fig. 3.1.
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3.2.3 Detailed Justification

This subsection justifies the marginal probability estimate shown in Eq. (3.19) in
greater detail, and may be skipped on first reading. We show that the bootstrap
particle filter provides a consistent estimator for the marginal probability P[x], or,
equivalently, the ratio of partition functions Z[x]/Zy[x]. The result that this esti-
mate is also unbiased is more difficult to establish; a proof is given by Del Moral
[36].

We structure our justification of the particle filter into three steps. We first give
a brief description of how a resampling procedure can generally be used to gener-
ate samples approximating a target distribution when only samples from a different
distribution are available. Secondly, we use these insights to explain how the resam-
pling procedure used in the particle filter generates trajectories whose distribution
is biased towards P[s|x], even though we only generate trajectories according to
P[s]. Finally, we use this result to show that the particle filter provides a consistent
estimate for P[x].

Sampling and resampling

Sampling and then resampling is a strategy to use samples s’, ..., s™ from a given
prior distribution f[s] to generate approximate * samples from a different distribu-
tion of interest, with density proportional to the product h[s] = f[s]|g[s]. In general,
h[s] is not normalized, and we denote the corresponding normalized probability
density by A[s] = h[s]/ f D[s]h[s]. To generate samples from A[s], we assign each
of the existing samples from f[s] a normalized weight

g[s*]

wk=_2521
Zﬁl gls’]

(3.20)

Then, by sampling from the discrete set {s', ..., sM} according to the assigned weights
W1, ...,WM, weselect samples that are approximately distributed according to /[ s].

Indeed, for M — oo the distribution of the resulting samples approaches the density

h[s][171]. We use resampling at each iteration of the algorithm of Section 3.2 to reg-

ularly prune those trajectories with low overall contribution to the marginalization

integral.

3The samples generated through resampling are only approximate because they are limited to the
discrete set {s, ..., s™}, which was originally drawn from the prior distribution f[s]. The resam-
pling process assigns weights based on the target distribution, which are used to select from that
set, but it does not generate entirely new samples directly from the target. Therefore, the sampled
points do not constitute draws from the target distribution unless M — oo.
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Particle filter

In the bootstrap particle filter, at each iteration, we start with a set of trajectories
sﬁo,i—u’ ,sfg’i_l]. In each iteration of the particle filter, the goal is to produce a
set of elongated trajectories (from time step (i — 1) — i) whose distribution tends
towards P[s[o,i]|X[0,i]- By iterating such a procedure, we can generate a set of tra-
jectories distributed approximately according to P[s[o,»]|X[0,]] for any n > 1. Thus,
the particle filter is a biased sampling scheme which provides an approximation of
P[s[0,n]1X[0,n]]- Moreover, using the particle filter we can also compute the corre-
sponding importance weights which can be used to compute the marginal proba-
bility P[x[o,] forn =1,2,....

We now take a closer look at one iteration of the particle filter. Start with a set
of trajectories in [y, 7;_; ], denoted by {SEO,i—l]’ ,sl[‘g’l._ﬂ}. These trajectories are
fi-1.
tory sﬁ),i_l] for k = 1,...,M. Each new segment is generated from the distribu-

then propagated forward to time 7;, by adding a new segment s to the trajec-

tion ?[sﬁ_u] |sf‘0,l._1]] such that the propagation step results in a set of trajectories
{S%O,i]’ ,sl[‘gyi]}, distributed according to f[spoi1] = P[s[0,i1%[0,i-1]]-

Next, we resample from the set of trajectories, with the goal of producing a set of
trajectories distributed according to the target density A[s] = P[s10,i1%[0,i]- Thus,
we have to find the appropriate weighting function g[s[ ;] in order to approxi-
mately produce samples according to the target distribution. By choosing g[sj ;] =
exp {—AU[s_117 X111} = PIX[i—1,17|%[0,i-1]> S[0.1]], We generate normalized weights

Plx[i1,i1%[0,i-1]» SI[{o,i]]

Wk

1

= —5 ; , (3.21)
ijl ?[x[i—u] 1X[0,i-1]> S[O,i]]

cf. Eq. (3.20). Note that this is the same choice of weighting function as in Sec-
tion 3.2, Eq. (3.16). By comparison with the notation used there, we see that the
Boltzmann factors U} and Rosenbluth weights w; were defined such that we can
express the normalized weight equivalently as

(3.22)

Why is this choice of weighting function the correct one? First, observe that
resampling with the normalized weights of Eq. (3.21) produces samples approxi-
mately distributed according to

hlspo,i1] = fls70,718[570,i1]

(3.23)
= P[s10,i11%[0,i=17] P[*[i=1,111%[0,i=1]> S[0,i]] -
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3 More Efficient Variants of PWS

What remains to be shown is that this density h[s[o ;], when normalized, becomes
the desired target distribution P[s[q ;1X[0,i]]-
To do so, we need to rewrite the expression for g[s[o ;] = P[X[i_1,i]|X[0,i-1]> 5[0,i]]
using Bayes’ theorem
_ PIspo,n1*(0,i-11 X[i-1,1] PX[i-1,11%[0,i-1]]

- _ (3.24)
glso,nl Pl s70,11%[0,i11]

Notice that the first term of the numerator can be written as P[s[q ;1x[o,]]. After
inserting this result into Eq. (3.23), we obtain

hlspo,q] = Plso,q1X(0,i7] PlX[i=1,i71%[0,i-17] - (3.25)

The second term in this product is a constant, since x is fixed. The first term is
a normalized probability density for sj ;). Therefore we find that the normalized
density corresponding to h[s ;] is

]’A‘[s[o,i]] = Ps0,i11%[0,i1] - (3.26)

Consequently, this is the distribution that is approximated by the set of trajectories
at the end of the i-th iteration of the particle filter, which is what we wanted to show.
At its heart, the particle filter is therefore an algorithm to produce samples that are
approximately distributed according to 2P[s|x].

Marginal probability estimate

We now use these insights to derive an estimate of P[x]. We start by noting that the
marginal density of the i-th output segment, P[x[;_y ;j|*[0,i—1]], is given by

Plxpi-1,i71*[0,i-11]

= f DIsio,1] PLX[i-1,1> 810,71 1%[0,i-11] (3.27)
= / DIsio,1] Pls10,11%[0,i-11] 8[5[0,11] -

The third line follows from the definition of g[s[o ;)] = P[x[i—1,i]1%[0,i-1]> 8[0,i]]-
Hence, we find that the probability P[x[;_ij|X[o,i—1]] can be expressed as the av-
erage

PLx(i-1,11%(0,i-11] = (8L(0,1]) (3.28)

s10,i11%10,i-11]
In principle, this average can be computed using a Monte Carlo scheme, using tra-
jectories generated from P[syq ;1|X[o,;—1]]- Notice that at each iteration of the particle
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3.2 RR-PWS

filter, we do dispose of a set of trajectories SEO,i]’ ,sl[\g’i] which are approximately
distributed according to P[s[o,i]|X[0,i—1]] above. Therefore, we can compute the av-
erage Eq. (3.28) directly from the trajectories that are present for each iteration of
the particle filter. With the notation from Section 3.2, using g[sf‘o,i]] = exp(—=U}),

we thus obtain the estimate

M
1 _ygk Wi
PLx—1,nl*p0-1] & 37 1;16 Ui = ﬁl (3.29)
The probability of the entire output trajectory P[x] is given by the product
Plx] = P(xo)?[x[o,lﬂxo] ?[x[n—l,n] |x[o,n—1]] (3.30)

where P(x,) is the probability of the initial output state x, which is assumed to be
known. In conclusion, we arrive at the following estimate for the marginal output
probability

Plx] = Pxo) [ % (3.31)
i=1

which is precisely Eq. (3.19).

3.2.4 Tuning the Particle Filter

For the efficiency of the particle filter, it is important to carefully choose the number
of segments n. When segments are very short (i.e., when n is large), the accumu-
lated weights (Eq. (3.15)) tend to differ very little between newly generated segments
Sﬁ'—u]' Hence, the pruning and enrichment of the segments is dominated by noise.
In contrast, when the segments are very long, the distribution of Boltzmann weights
Uik becomes very wide. Then only a small number of segments contribute substan-
tially to the corresponding Rosenbluth weight w;. Hence, to correctly choose n, we
need a measure that quantifies the variance in the trajectory weights of the n parti-
cles. To this end, we follow Martino et al. [105] and introduce an effective sample
size (ESS)

2
Wy
L , (3.32)

S (70

which liesin therange 1 < M, geff) <M;M Eeff) = lif one trajectory has a much higher
weight than all the others and M geff) = M ifall trajectories have the same weight. As

a rule of thumb, we resample only when the M?ff) drops below M/2. Additionally,
as recommended in Ref. [44], we use the systematic sampling algorithm to randomly

Mlgeff) —
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3 More Efficient Variants of PWS

draw the indices in step 2(c) which helps to reduce the variance; we find, however,
the improvement over simple sampling is very minor. Using these techniques, the
only parameter that needs to be chosen by hand for the particle filter is the ensemble
size M.

3.3 TI-PWS

Thermodynamic integration PWS (TI-PWS), is based on the analogy of marginal-
ization integrals with free-energy computations. As before, we view the problem
of computing the marginal probability P[x] as equivalent to that of computing the
free-energy difference between ensembles defined by the potentials U,[s, x] and
U[s, x], respectively. For TI-PWS, we define a potential Ug[s, x] with a continuous
parameter 6 € [0, 1] that allows us to transform the ensemble from U, to U = U;.
The corresponding partition function is

Zolx] = f D[s] e~Uelsx] (3.33)
For instance, for 0 < 8 < 1, we can define our potential as
Ug[s,x] = Uy[s,x] + O AU[s, x], (3.34)

such that e~¥els*] = P[s]P[x|s]®. Note that this is the simplest choice for a con-
tinuous transformation between U, and U;, but by no means the only one. For
reasons of computational efficiency, it can be beneficial to choose a different path
between U, and U,, depending on the specific system [62]. Here we will not con-
sider other paths however, and derive the thermodynamic integration estimate for
the potential given in Eq. (3.34).

To derive the thermodynamic integration estimate for the free-energy difference,
we first compute the derivative of In Z4[x] with respect to 6:

g __1 9 ~Us[s.x]
30 InZg[x] = Zolx] aefﬂ[s]e 6

__ <6Uea[g, x| >6 (3.35)

= —(AU[s,x]), -

Thus, the derivative of In Zg[x] is an average of the Boltzmann weight with respect
to P, s|x] which is the ensemble distribution of s given by

Pss|x] = ﬁe‘% [s.x] (3.36)
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Integrating Eq. (3.35) with respect to 6 leads to the formula for the free-energy dif-

ference
1

AF[x] = - / doé (AU[s,x]), (3.37)
0
which is the fundamental identity underlying thermodynamic integration.

To compute the free-energy difference using Eq. (3.37), we evaluate the integral
with respect to & numerically using Gaussian quadrature, while the inner average
(AU[s, x]), is computed using MCMC simulations. To perform MCMC simulations
in trajectory space we use ideas from transition path sampling (TPS). Specifically,
we define a MCMC proposal distribution for trajectories using forward shooting and
backward shooting [19]. These proposals regrow either the end, or the beginning of
a trajectory, respectively. A proposal is accepted according to the Metropolis crite-
rion [114]. Since the efficiency of MCMC samplers strongly depends on the proposal
moves that are employed, we are certain that better MCMC estimates are possible
with more sophisticated proposal distributions.

3.3.1 MCMC Sampling in Trajectory Space

TI-PWS relies on the computation of averages with respect to the ensembles corre-
sponding to the interaction parameter 6, given by P5[s|x] « exp(—Upg[s, x]). Sam-
pling from this family of distributions using the SSA (Gillespie) algorithm is not
possible. Instead, in this section, we show different ways of how to implement a
Markov Chain Monte Carlo (MCMC) sampler in trajectory space to generate cor-
rectly distributed trajectories.

We can build an MCMC sampler in trajectory space using the Metropolis-Hastings
algorithm. To create a Markov chain in trajectory space, we need to find a suitable
proposal kernel, that generates a new trajectory s’ from a given trajectory s with
probability T(s — s"). We accept the proposal using the Metropolis criterion with
probability

A(s', s) = min (1,eu9[5’x]_u@[s"x (3.38)

]T(s’ - s))
T(s —> §)

to create a chain of trajectories with stationary distribution given by %5[s|x] =
e~Uslsxl/z [x] for 0 < 6 < 1. To ensure efficient convergence of the resulting
Markov chain to its stationary distribution, the proposal kernel must balance two
conflicting requirements. To efficiently explore the state space per unit amount of
CPU time, the proposed trajectory s’ must be sufficiently different from the orig-
inal trajectory s, while at the same time it should not be so different that the ac-
ceptance probability becomes too low. Thus, the design of the proposal kernel is
crucial for an efficient MCMC sampler, and we will discuss various strategies to
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3 More Efficient Variants of PWS

create trial trajectories. Since different types of trial moves can easily be combined
in a Metropolis-Hastings algorithm, the most efficient samplers often incorporate
multiple complementary proposal strategies to improve the exploration speed of the
trajectory space.

The simplest (and naive) proposal kernel is to generate an entirely new trajectory
s’ independent of s, by sampling directly from P[s] using the SSA. Hence, the tran-
sition kernel is given by T(s — s') = P[s’]| and a proposal s — s’ is accepted with
probability

A(s', s) = min <1, eUelsx]-Usls' x] 2lsl )

P[s']
?[x|s’]e)
P[x|s]°

(3.39)
= min (1,

where the second line follows by using the definition of Uy [s, x] given in Eq. (3.34).
Although this simple scheme is correct, it should not be used in practice to compute
P[x]. Indeed, on would get a better estimate of ’[x] by just using the same number
of independent sample trajectories from 2[s] and using the brute-force scheme in
Eq. (2.8) without taking the detour of using MCMC to estimate the normalization
constant.

Instead, an idea from transition path sampling is to only regenerate a part of the
old trajectory as part of the proposal kernel [38]. By not regenerating the entire tra-
jectory, the new trajectory s’ is going to be correlated with the original trajectory s,
improving the acceptance rate. The simplest way to generate trial trajectories using
a partial update is a move termed forward shooting in which a time point 7 along the
existing trajectory s is randomly selected, and a new trajectory segment is regrown
from this point to the end, resulting in the proposal s’. Since the new segment is
generated according to the unbiased input statistics, the acceptance probability for
the proposed trajectory is given by Eq. (3.39), i.e., the same as if the entire trajectory
had been regenerated. If the input dynamics given by P[s] are time-reversible, we
can also perform a backward shooting move. Here, the beginning of s is replaced by
a new segment that is generated backwards in time. Assuming that the initial con-
dition is the input’s steady state distribution, the corresponding acceptance proba-
bility of the backward shooting move is again given by Eq. (3.39). Using these two
moves we create an MCMC sampler where both ends of the trajectory are flexible,
and thus if the trajectory is not too long, the chain will quickly relax to its stationary
distribution.

For long trajectories it can prove to be a problem that the middle section is too
inflexible when the proposal moves only regenerate either the beginning or the end
of a trajectory. Therefore, one could additionally try to incorporate mid-section re-
growth to make sure that also the middle parts of the trajectory become flexible. To
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regrow a middle segment with duration 7 of a trajectory s, we have to generate a new
segment of duration 7 according to the stochastic dynamics given by P[s] but with
the additional condition that we have to connect both endpoints of the new segment
to the existing trajectory. Although the starting point of the segment can be freely
chosen, the challenge is to ensure that the end point of the new segment satisfies
the end-point constraint. Stochastic processes that generate trajectories under the
condition of hitting a specific point after a given duration 7 are called stochastic
bridging processes.

The simplest way to generate trajectories from a bridging process is by generating
a trajectory segment of length 7 from the normal stochastic process and rejecting
the segment if it does not hit the correct end point [79]. Clearly, this strategy is
only feasible for very short segments and when the state space is discrete, as other-
wise almost every generated segment will be rejected due to not hitting the correct
end point. To avoid this problem, more efficient algorithms have been developed
to simulate stochastic bridges for some types of stochastic processes. For diffusion
processes, bridges can be simulated efficiently by introducing a guiding term into
the corresponding Langevin equation [199]. For jump processes, bridges can be
simulated using particle filters [66], by a weighted stochastic simulation algorithm
(WSSA) [64], or using random time-discretization (uniformization) [79].

Further techniques to create a trajectory space MCMC samplers have been de-
veloped in the literature. Crooks [33] describes a scheme to create MCMC moves
for trajectories evolving in non-equilibrium dynamics, by making MCMC moves to
change the trajectories’ noise histories. In the Particle Markov Chain Monte Carlo
(PMCMC) algorithm, proposal trajectories are generated using a particle filter and
accepted with an appropriate Metropolis criterion [4]. Another class of efficient
samplers for Markov jump processes can be built using uniformization [149].

3.4 Simple Application and Benchmark

To demonstrate the power of our framework and illustrate how the techniques of
the previous sections can be used in practice, we apply PWS to a simple chemical re-
action network. We consider a linearly coupled birth-death process which has been
studied previously using a Gaussian model [194], and by Duso and Zechner [46] us-
ing an approximate technique, and we compare our results with these studies. This
simple birth-death system serves to illustrate the main ideas of our approach and
also highlights that linear systems can be distinctly non-Gaussian.

The code used to produce the PWS estimates was written in the Julia program-
ming language [16] and has been made freely available [150, 151]. For performing
stochastic simulations we use the DifferentialEquations.jl package [147].
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We consider a stochastic process @ = X of species X which is created at rate p(t)
and decays with constant rate u per copy of X. This system receives information
from an input signal that modulates the birth rate p(t). For simplicity, we assume it
is given by

p(t) = pos(t) (3.40)

where p, is a constant and s(t) is the input copy number at time ¢. This is a simple
model for gene expression, where the rate of production of a protein X is controlled
by a transcription factor S, and X itself has a characteristic decay rate. The input
trajectories s(t) themselves are generated via a separate birth-death process @ = S
with production rate x¥ and decay rate A.

We compute the trajectory mutual information for this system as a function of the
trajectory duration T of the input and output trajectories. For T — o0, the trajectory
mutual information is expected to increase linearly with T, since, on average, every
additional output segment contains the same additional amount of information on
the input trajectory. Because we are interested in the mutual information in steady
state, the initial states (sy, xo) were drawn from the stationary distribution P(sg, x;).
This distribution was obtained using a Gaussian approximation. This does not in-
fluence the asymptotic rate of increase of the mutual information, but leads to a
nonzero mutual information already for T = 0.

Figure 3.2 shows the mutual information as a function of the trajectory duration
T. We compare the three PWS variants and two approximate schemes. One is that
of Duso and Zechner [46]. To apply it, we used the code publicly provided by the
authors*, and to avoid making modifications to this code, we chose a fixed initial
condition (s, = x, = 50) which causes the mutual information to be zero for T = 0.
The figure also shows the analytical result of a Gaussian model [194], obtained using
the linear-noise approximation (see Section 3.6.1).

We find that the efficiency of the respective PWS variants depends on the dura-
tion of the input-output trajectories. For short trajectories all PWS variants yield
very similar estimates for the mutual information. However, for longer trajectories
the estimates of DPWS and, to a smaller degree, TI-PWS diverge, because of poor
sampling of the trajectory space in the estimate of P[x]. For longer trajectories,
the estimate becomes increasingly dominated by rare trajectories, which make an
exceptionally large contribution to the average of P[x]. Missing these rare trajecto-
ries with a high weight tends to increase the marginal entropy H(X) [see Eq. (2.9)],
and thereby the mutual information; indeed, the estimates of DPWS and TI-PWS
are higher than that of RR-PWS. For brute-force DPWS, the error decreases as we
increase the number M of input trajectories per output trajectory used to estimate
P[x]. Similarly, for TI-PWS the error decreases as we use more MCMC samples for

“https://github.com/zechnerlab/PathMI
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input S output X

DPWS
%’L — M=128
— M=1024
— M=4096
TI-PWS
M=128
M= 1024
+ M=4096
RR-PWS
— M=128

copy number

approximations

= = Duso, et al. (2019)
- Gaussian (LNA)

mutual information (nats)

trajectory duration

Figure 3.2: Comparing different schemes to compute the mutual information as a
function of trajectory duration for a simple coupled birth-death process
with rates x = 50,4 = 1,p, = 10,4 = 10 and steady-state initial con-
dition. The top panels show example trajectories of input and output
as well as the mean (solid line) and standard deviation (shaded region).
Below, the mutual information is shown as a function of trajectory du-
ration. The inset shows an enlarged version of the dotted rectangle near
the origin. For short trajectories all PWS estimates agree. Yet, for longer
trajectories, DPWS and TI-PWS require a much larger number of input
trajectories M for computing P[x] than RR-PWS to converge. Results for
the three PWS variants are compared with the Duso and Zechner [46]
estimate, and with the linear noise approximation from Ref. [194]. We
find excellent agreement between the Duso scheme and RR-PWS. The
Gaussian linear noise approximation systematically underestimates the
mutual information. All PWS estimates, as well as the Duso approxima-
tion were computed using N = 10* samples from P[s, x].
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the marginalization scheme. For the RR-PWS, however, already for M = 128 the
estimate has converged; we verified that a further increase of M does not change
the results.

We also find excellent agreement between the RR-PWS estimate and the approx-
imate result of Duso and Zechner [46]. Only very small deviations are visible in
Fig. 3.2. These deviations are mostly caused by the different choice for the initial
conditions. In RR-PWS, the initial conditions are drawn from the stationary distri-
bution, while in the Duso scheme they are fixed, such that the mutual information
computed with RR-PWS is finite while that computed with the Duso scheme is zero.
Yet, as the trajectory duration T increases, the Duso estimate slowly “catches up”
with the RR-PWS result.

Fig. 3.2 also shows that although the Gaussian model matches the PWS result for
T = 0, it systematically underestimates the mutual information for trajectories of
finite duration T > 0. Interestingly, this is not a consequence of small copy-number
fluctuations: increasing the average copy number does not significantly improve
the Gaussian estimate.’

The different approaches for computing the marginal probability P[x] lead to
different computational efficiencies of the respective PWS schemes. In Fig. 3.3, as
a benchmark, we show the magnitude of the error of the different PWS estimates
in relation to the required CPU time. Indeed, as expected, the computation of the
marginal probability poses problems for long trajectories when using the brute force
DPWS scheme. More interestingly, while TI-PWS improves the estimate of the mu-
tual information, the improvement is not dramatic. Unlike the brute-force scheme,
thermodynamic integration does make it possible to generate input trajectories s
that are correlated with the output trajectories x, but it still overestimates the mu-
tual information for long trajectories unless a very large number of MCMC samples
are used.

The RR-PWS implementation evidently outperforms the other estimates for this
system. The regular resampling steps ensure that we mostly sample input trajec-
tories s with non-vanishing likelihood P[x|s], thereby avoiding the sampling prob-
lem from DPWS. Moreover, sequential Monte Carlo techniques such as RR-PWS
and FFS [3] have a considerable advantage over MCMC techniques in trajectory

SA detailed analysis of this observation was carried out in a (currently unpublished) collaborative
work with Anne-Lena Moor and Christoph Zechner from the MPI-CBG in Dresden [120]. This
work demonstrates that the discrepancy arises because all the information on the input signal is
contained in the output species’ production process, which is catalyzed by the input, rather than
in the decay process of the output, which occurs independently of the input. The PWS result
captures this distinction by using a fully discrete approach. In contrast, the Gaussian estimate of
the linear-noise approximation misses this distinction because in the noise term for the output
the contributions from the production and decay reactions are added together. We also comment
further on this matter in Chapter 5.
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Benchmark of PWS Estimates (N = 104 T=5)
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Figure 3.3: Comparing estimation bias for the different PWS variants in relation to
their CPU time requirements. Each dot represents a single mutual in-
formation estimate with N = 10* samples for output trajectories of du-
ration T = 5. Almost all the CPU time of a PWS estimate is spent on the
computation of the marginal probability P[x]. The bias of the marginal
probability estimate can be reduced by using a larger number M of sam-
pled input trajectories to compute the marginalization integral, which
also increases the required CPU time. The RR-PWS estimate converges
much faster than the estimate of DPWS and TI-PWS. For DPWS and TI-
PWS, the dots represents estimates ranging from M = 2° to M = 24, for
RR-PWS ranging from M = 23 to M = 21°. As the baseline of zero bias
we use the converged result from the RR-PWS estimates.
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sampling. With MCMC path sampling, we frequently make small changes to an
existing trajectory such that the system moves slowly in path space, leading to poor
statistics. In contrast, in RR-PWS we generate new trajectories from scratch, seg-
ment by segment, and these explore the trajectory space much faster.

3.5 Discussion

Aside from Direct PWS introduced in Chapter 2, we developed two additional vari-
ants of PWS, capitalizing on the connection between information theory and sta-
tistical physics. Specifically, the computation of the mutual information requires
the evaluation of the marginal probability of individual output trajectories P[x].
This corresponds to the computation of a partition function in statistical physics,
Plx] = [ P[s]P[s]P[x]|s]. RR-PWS and TI-PWS are based on techniques from
polymer and rare-event simulations to make the computation of the marginal tra-
jectory probability more efficient.

The different PWS variants share some characteristics yet also differ in others.
DPWS and RR-PWS are static Monte Carlo schemes in which the trajectories are
generated independently from the previous ones. These methods are similar to
static polymer sampling schemes like PERM [69] and rare-event methods like DFFS
or BG-FFS [3]. In contrast, TI-PWS is a dynamic Monte Carlo scheme, where a new
trajectory is generated from the previous trajectory. In this regard, this method is
similar to the CBMC scheme for polymer simulations [168] and the TPS [19], TIS
[200], and RB-FFS [3] schemes to harvest transition paths. The benefit of static
schemes is that the newly generated trajectories are uncorrelated from the previous
ones, which means that they are less likely to get stuck in certain regions of path
space. Concomitantly, they tend to diffuse faster through the configuration space.
Indeed, TI-PWS suffers from a problem that is also often encountered in TPS or
TIS, which is that the middle sections of the trajectories move only slowly in their
perpendicular direction. Tricks that have been applied to TPS and TIS to solve this
problem, such as parallel tempering, could also be of use here [203].

Another distinction is that RR-PWS generates all the trajectories in the ensemble
simultaneously yet segment by segment, like DFFS, while DPWS and TI-PWS gen-
erate only one full trajectory at the time, similar to RB-FFS, BG-FFS, and also TPS
and TIS. Consequently, RR-PWS, like DFFS, faces the risk of genetic drift, which
means that, after sufficiently many resampling steps, most paths of the ensemble
will originate from the same initial seed. Thus, when continuing to sample new
segments, the old segments that are far in the past become essentially fixed, which
makes it possible to miss important paths in the RR-PWS sampling procedure. Asin
DFFS, the risk of genetic drift in RR-PWS can be mitigated by increasing the initial
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number of path segments. Although we did not employ this trick here, we found
that RR-PWS was by far the most powerful scheme of the three variants studied.

Nonetheless, we expect that DPWS and TI-PWS become more efficient in systems
that respond to the input signal with a significant delay 7. In these cases, the weight
of a particular output trajectory depends on the degree to which the dynamics of
the output trajectory correlates with the dynamics of the intput trajectory a time
7 earlier. Because in RR-PWS a new segment of an output trajectory is generated
based on the corresponding segment of the input trajectory that spans the same
time-interval, it may therefore miss these correlations between the dynamics of the
output and that of the input a time 7 earlier. In contrast, DPWS and TI-PWS gen-
erate full trajectories one at the time, and are therefore more likely to capture these
correlations. Also the machine-learning based approach for determining the opti-
mal importance sampling distribution q[s|x] presented in Chapter 6 (Section 6.1.4)
is likely to prove useful in these scenarios with complex temporal dependences be-
tween the input and output trajectories.

3.6 Supplementary Information

3.6.1 Gaussian Approximation of the Linear System

We derive the Gaussian approximation of the simple reaction system used in Sec-
tion 3.4. We recall the elementary biochemical reaction motif consisting of four
reactions

A
0—>S S—50 S—L5S+X, X—-o0 (3.41)

with input S and output X. This reaction motif is a simple model for gene expres-
sion, where the rate of production of a protein X is controlled by a transcription
factor S, and X itself has a characteristic decay rate. The dynamics of S are given by
a constant birth rate and a constant (per-molecule) decay rate.

We compute the covariance functions of this model which are then used to de-
rive Gaussian signal statistics, and allow us to compute the Gaussian information
rate. Specifically, we assume that the process is sampled at a sampling rate v, with
Sy, ..., S, being the sequence of sampled inputs and Xj, ..., X,, being the sequence
of outputs in time. We can describe the dynamics of the input and output as fluc-
tuations around the mean, i.e. we write §S; = S; — (S;) and §X; = X; — (X;). In
the limit of large copy numbers, due to the central limit theorem, the distribution
of these fluctuations become Gaussian [60].

In particular, let Z = (8S4,...,8S,,8X3, ..., 5Xn)T be the concatenation of the
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input and output sequences. Then, the distribution of Z is multivariate normal, i.e.,

1 —
P(Z=7)= —— 3GE) (3.42)

V@)

where the covariance Matrix £ € R?"%2" has the following block structure

Xss  Zxs )
3= . (3.43)
( Zsx Zxx

Here Xgs and Xxx are the (auto-)covariance matrices of the input and the output,
respectively, whereas Xgx = Z)T(S contain the cross-covariances. The matrix ele-
ments are given by ZXB = (8A;6B;) = Cp(t; — t;) where C4p(t) denote the (cross-
)covariance functions and ¢y, ..., t,, are the sampling times. Thus, the full statistics
of the trajectories are determined from the (cross-)covariance functions.

Since the reaction scheme in Eq. (3.41) features only first-order reactions, the
covariance functions can be calculated explicitly using the regression theorem [206,
60]. For t > 0, we obtain the following expressions for the covariance functions:

Css(t) = g exp(—At) (3.44)
Csx(t) = pagst exprel[(A — w)t] exp(—At) + ogx exp(—put) (3.45)
Cxs(t) = o&y exp(—At) (3.46)
Cxx(t) = padxt exprel[(A — w)t] exp(—At) + oy exp(—ut). (3.47)

In the expressions above we used the relative exponential function

exprel(x) = ip(X)_l’ 111:;6 i 2 (3.48)
and the point (co-)variances
odg = % (3.49)
0dx = fcfi (3.50)
0%y = E(aés +0éx). (3.51)

Because the process is stationary, the values of the covariance functions for t < 0
can be obtained by applying the symmetry relation C45(t) = Cpa(—t).
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Now, we can directly compute the mutual information from the covariances. Us-
ing Egs. (3.44) to (3.47) we obtain the matrix elements of the joint covariance matrix
Z defined in Eq. (3.43) and then the mutual information is given by the expression

1. (1Zss|Zxx]
I(8,X) = 3 In <T> (3.52)
Note, that for discretized trajectories of length n, the matrix X has dimensions of
2n X 2n. Thus, the computation of the trajectory mutual information requires the
computation of a 2n X 2n matrix, which can be computationally challenging for long
trajectories (large n). In Appendix A of this thesis, we discuss some techniques to
considerably accelerate the computation of the mutual information.

Using spectral analysis, Tostevin and ten Wolde [195] were able to derive an an-
alytical expression for the Gaussian mutual information rate of this model in the

continuous-time limit, given by
A 1/1+f31—1]. (3.53)

R(S,I)C) = 5

The information rate of the discretely sampled process converges to this value as
the sampling rate approaches infinity [195]. Notably however, the model corre-
sponding to Eq. (3.53) is a continuum description that assumes Gaussian statistics;
indeed, this rate deviates from the mutual information rate of the exact model that is
described by the chemical master equation, even in the limit of large copy numbers
[119]. This finding is also further discussed in Chapter 5 (Section 5.2.1).

57






4 Application—Bacterial Chemotaxis

The chemotaxis signaling network of the bacterium Escherichia coli is a sophisticated
information processing system, enabling the bacterium to sense nutrient gradients and
dynamically adjust its movement. The bacterium’s ability to climb chemical gradients
is constrained by the mutual information rate between the sensed nutrient concentra-
tion and the phosphorylated messenger protein CheYp. A recent study by Mattingly
et al. (2021) used a Gaussian approximation to estimate this rate, based on the as-
sumption that in shallow gradients the chemotactic response is approximately linear.
However, the nonlinear nature of chemotaxis suggests that Gaussian methods may
only approximate the true information rate. In this chapter, we apply an exact tech-
nique, Path Weight Sampling (PWS), to precisely quantify information transmission
in E. coli chemotaxis and compare the results against the Gaussian approximation. We
build a stochastic model based on literature data, which we use to simulate nonlinear
chemotactic responses to time-dependent stimuli. Our PWS results for this model yield
information rates 4-5 times higher than those obtained experimentally. While this
finding can be viewed as surprisingly accurate for an ab initio prediction, the question
remains whether the discrepancy is due to the limitations of the Gaussian framework
used by Mattingly et al. or due to the assumptions of our stochastic model. Examin-
ing the latter question reveals that our initial model underestimates both the magni-
tude of the response and the biochemical noise. We refined the model by changing two
key parameters that describe the receptor array, namely the number of clusters and
their size. This leads to information rate estimates that closely align with experimen-
tal data, indicating that the number of receptor clusters is much smaller than hitherto
believed, while their size is much larger. Finally, our analysis confirms the accuracy of
the Gaussian framework for studying chemotaxis in shallow gradients, validating its
use by Mattingly et al. a posteriori.

The contents of this chapter have been published in Phys. Rev. X 13, 041017 (2023) [152].
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The chemotaxis system of the bacterium Escherichia coli is a complex informa-
tion processing system. It is responsible for detecting nutrient gradients in the cell’s
environment and using that information to guide the bacterium’s movement. E.
coli navigates through its environment by performing a biased random walk, suc-
cessively alternating between so-called runs, during which it swims with a nearly
constant speed, and tumbles, during which it randomly chooses a new direction
[15]. By adaptively varying the tumbling probability and thus adjusting the relative
duration of runs and tumbles, the bacterium is able to climb a chemical gradient.

Recently, Mattingly et al. [107] found that the ability of the bacterium to climb
chemical gradients is fundamentally limited by the information it can acquire via its
receptors. However, to calculate the information rate from their experimental data,
they relied on a Gaussian approximation which assumes linear Gaussian statistics
for the trajectories. The use of the approximation is justified by the argument that in
shallow concentration gradients the behavior of the chemotaxis network is approx-
imately linear. Nevertheless, it is well known that chemotaxis generally exhibits a
highly nonlinear response, which suggests limitations to the Gaussian framework’s
accuracy in capturing the full dynamics of the system. Moreover, we have seen in
the previous chapter that the Gaussian approximation may fail in surprising ways.

In this chapter, we use Path Weight Sampling (PWS) to exactly quantify informa-
tion transmission in E. coli chemotaxis, and to assess the accuracy of the Gaussian
approximation. To study information transmission in E. coli chemotaxis using PWS,
we first develop a stochastic model of the biochemical chemotaxis network based on
the MWC model for receptor cooperativity [117, 8, 175]. This model accurately de-
scribes the nonlinear behavior of the chemotaxis network and allows us to simulate
the chemotactic response to an arbitrary time-dependent stimulus. Furthermore,
we can use PWS to compute the mutual information rate between arbitrary input
signals and the response signal generated by the model. To obtain realistic time-
dependent input signals, we assume a cell performing a random walk in a static
exponential gradient, following Mattingly et al. [107]. By using the same input dy-
namics as those in Ref. [107], we can rigorously compare our results against the
experiments.

One of our principal findings is that the information transmission rate computed
by PWS for the model based on the literature data—which we refer to as the “literature-
based model”—is approximately 4-5 times higher than the rate measured experi-
mentally by Mattingly et al. [107]. Given that this model relies entirely on available
literature data without any fitting to the results of Mattingly et al., an agreement
within a factor of 4-5 is perhaps unexpectedly good. Still, the source of the discrep-
ancy remains unclear: does it stem from the inaccuracy of the Gaussian framework
used by Mattingly et al. or from the inaccuracy of our literature-based model?

To address this question, we examined the data of Mattingly et al. on the response
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4.1 Stochastic Dynamics of the Input Signal for Chemotaxis

Figure 4.1: In a shallow exponential gradient c(x), the — E(X ii ;)
bacterium diffuses nearly freely in the x- Pgt; 33
direction. The variance of the position in- __ c(x)=coe?"
creases with time, the hallmark of a random
walk. The input signal is the concentration
c(t) = c(x(t)) as experienced by the bac-
terium at time ¢. X

and the noise amplitude. We found that the literature-based model underestimates
not only the response strength but also the noise. By fitting the response kernel
and the noise correlation function, we developed a “fitted model” in which recep-
tor clusters are larger, enhancing the response amplitude, but significantly fewer
in number, leading to much greater noise and thus a lower information transmis-
sion rate. Recomputing the information rate with PWS for this model, fitted to the
linear response and the noise, yielded close agreement with the information rate
measurements of Mattingly et al., suggesting that the receptor array composition
differs substantially from previous assumptions. In particular, while the predicted
cluster size is about a factor of 2 larger than previous estimates, the number of clus-
ters is about tenfold lower. Lastly, we found that the Gaussian framework is highly
accurate in the regime of shallow gradients as studied by Mattingly et al. [107], thus
verifying their Gaussian approach a posteriori.

In Section 4.1 we describe the dynamics of the input signal. Section 4.2 intro-
duces the stochastic model of the chemotaxis system that we developed based on
available literature. In Section 4.3 we describe the Gaussian approximation used
by Mattingly et al. [107] to compute the information transmission rate and in Sec-
tion 4.4 we present the results. We conclude with a discussion of our findings, par-
ticularly regarding the number of clusters and their size.

4.1 Stochastic Dynamics of the Input Signal for
Chemotaxis

The information transmission rate depends not only on the biochemical chemotaxis
network, but also on the dynamics of the input signal. It is therefore important that
the dynamics of this signal in our model agree with those in the experiments of
Mattingly et al. [107]. For these experiments the input signal is the time-dependent
ligand concentration c(t) that is experienced by the swimming bacterium.

We consider an Escherichia coli bacterium that swims in a static nutrient concen-
tration gradient c¢(x). Following Mattingly et al. [107], the gradient is exponential:

61



4 Application—Bacterial Chemotaxis

c(x) = coed* with steepness g. In a shallow gradient, the speed v,(¢) of E. coli along
the gradient axis can be considered as a stochastic process that fluctuates around
the net chemotactic drift velocity. Following Mattingly et al. [107], we assume that
in a shallow gradient the bacterial swimming dynamics are, to a good approxima-
tion, the same as they are in the absence of a gradient. Their experimental evidence
shows that the velocity fluctuations in absence of a gradient are described by an
exponentially decaying auto-correlation function:

V(1) = (x(0)vx (1)) = ave_/”t' : (4.1)

Therefore, in a shallow gradient, the gradient-climbing speed can be modeled as a
zero-mean Ornstein-Uhlenbeck process

dvx
dt

where o = \/2a,4, and &(¢) is white noise with (§(¢)&(t")) = 8(t—t"). The x-position
of the bacterium is given by the integral of the velocity, i.e., x(t) = fot d7 vy (7). Thus,
when projected onto the gradient axis, the bacterium performs a 1D random walk
described by the Langevin equation

d?x

YT —/1— +0&(t). (4.3)

Since the bacterium moves in a static concentration gradient described by c(x),
the concentration dynamics that the cell observes are generated directly from its
own movement dynamics, see Fig. 4.1. At time ¢ the cell is at position x(¢) and thus
measures the concentration c(t) = c(x(t)). We find the stochastic dynamics of ¢ by
differentiating using the chain rule

dc 6c 6x

= v, + ot(t) (4.2)

The concentration dynamics are thus fully determined by the stochastic dynamics
of the cell’s swimming velocity v, (¢) in the absence of a gradient and by the shape
of the concentration gradient c(x). The resulting stochastic dynamics are visualized
in Fig. 4.2.

In the PWS simulations we use c(t) directly as the input to our system. Yet, for the
Gaussian approximation, to which we will compare the PWS result, we need to use
a different input signal because the chemotaxis system does not respond linearly
to c(t). Instead, Mattingly et al. [107] show that the chemotaxis system responds
approximately linear to an input s(t) defined by

s(t) = %ln c(t) = gu,(t). (4.5)
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Figure 4.2: Input dynamics. Left column: two example time traces of the up-
gradient velocity v,(t) and the observed concentration c(t) obtained by
integrating Eq. (4.4). Right column: averages of velocity and concentra-
tion traces obtained from 1000 simulated trajectories. The solid lines
show the mean as a function of time and boundaries of the shaded re-
gions indicate the 5% and 95% quantiles.
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Figure 4.3: Cartoon of the chemotaxis network of E. coli. Receptors form clusters
with an associated CheA kinase. A cluster can either be active or inac-
tive, depending on the number of bound ligands (green dots) and methy-
lated sites (orange dots). Active CheA can phosphorylate CheY; phos-
phorylated CheY controls the rotation direction of the flagellar motors
and thereby the movement of the bacterium.
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The correlation function of s(¢) is given by

Cos(t) = (s(D)s(t + 1)) = g2V (1). (4.6)

The power spectral density of this signal is given by the Fourier transform of its

correlation function:
2a,1

w2+ A2°

We use this same input below in Section 4.3 to compute the Gaussian approxima-
tion of the mutual information rate. As discussed in more detail in the main text,
we note that the mutual information between the output and the input trajectory
c(t), as measured in the PWS simulations, is identical to that between the output
and the input trajectory s(t), as computed in the Gaussian model because of the
deterministic and monotonic mapping between c(t) and s(t).

By(w) = g*V(w) = g* 4.7)

4.2 Stochastic Chemotaxis Model

We apply PWS to a stochastic model of the chemotaxis network that describes in-
dividual reactions via a master equation. In this model, the receptors are grouped
in clusters. Each receptor can switch between an active and an inactive confor-
mational state, but, in the spirit of the Monod-Wyman-Changeux model [117], the
energetic cost of having two different conformations in the same cluster is pro-
hibitively large. We can then speak of each cluster as either being active or in-
active. Each receptor in a cluster can bind ligand and be (de)methylated, which,
together, control the probability that the cluster is active. In the simulations, re-
ceptor (de)methylation is modeled explicitly, because the (de)methylation reactions
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are slow. In contrast, the timescale of receptor-ligand (un)binding is much faster
than the other timescales in the system, i.e., those of the input dynamics, CheY
(de)phosphorylation, and receptor (de)methylation. The receptor-ligand binding
dynamics can therefore be integrated out without affecting information transmis-
sion, in order to avoid wasting CPU time. In addition, the receptor clusters can
phosphorylate CheY, while phosphorylated CheY is dephosphorylated at a constant
rate. The dynamics of the kinase CheA and the phosphatase CheZ which drive
(de)phosphorylation are not modeled explicitly. Figure 4.3 shows a depiction of the
bacterial chemotaxis network.

Table 4.1 shows the parameter values of our chemotaxis model, which are all
based on values reported in the literature. For what follows below, the key param-
eters are the number of receptors per cluster, which is taken to be N = 6 based on
Refs. [165, 82], while the number of clusters is N, = N,/N = 400, where 10°> < N, <
10% is an estimate for the total number of receptors based on Ref. [96]. These are
the numbers of the “literature-based model”. The key parameters, the number of
clusters and their size, change in the “fitted model”, which is based on fitting the
response kernel and noise correlation function to the data of Mattingly et al. [107].

4.2.1 MWC Model

In our model, each cluster consists of N receptors. Shimizu et al. [165] report a
typical value for the cluster size of N = 6. Detailed balance requires that the lig-
and binding affinity depends on whether a cluster is in the active or inactive state.
Consequently, we have a dissociation constant K,, for a ligand bound to an active
receptor and another dissociation constant K; for a ligand bound to an inactive re-
ceptor. For chemotaxis, K, > K;j, i.e. the ligand binding affinity is higher for the
inactive state.

Additionally, each receptor monomer has M methylation sites that can affect
its conformation and therefore the kinase activity. The aspartate receptor Tar has
M = 4 methylation sites [165]. We model the receptors’ methylation dynamics such
that CheB only demethylates active receptors while CheR only methylates inactive
receptors, following previous models for chemotaxis [8, 121]. This approach repre-
sents arguably the simplest way to model methylation with exact receptor adapta-
tion.

In an environment with ligand concentration c, the probability of a receptor clus-
ter with m methylated sites to be active, p,(c, m), is determined by the free-energy
difference between the active and inactive receptor states

1

T+ o7 (48)

pa(ca m) =
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parameter value description
a, 157.1 um?s~2  variance of up-gradient velocity [107]
A 0.86 s71 velocity correlation decay constant
[107]
Co 100 UM mean ligand concentration [107]
N 6 number of receptor units per cluster
[165]
N, 400 number of receptor clusters [96]
M 4 number of methylation sites per re-
ceptor [165]
Ny 10000 total copy number of CheY proteins
(phosphorylated and unphosphory-
lated) [96]
K, 2900 UM ligand dissociation constant of active
receptors [82]
K; 18 UM ligand dissociation constant of inac-
tive receptors [82]
kg 0.1 s71 methylation rate [165, 107]
kg 0.2 s71 demethylation rate [165, 107]
ka 0.015 s7! phosphorylation rate [173, 174]
k; 10.0 st dephosphorylation rate [173, 174]
2% 0.17 steady-state fraction of phosphory-
lated CheY [173]
my/N 0.5 receptor methylation level without
ligands [165]
Sfm -2.0 kg T free energy change of active con-

formation from attachment of one
methyl group [165]

Table 4.1: The parameters required for the chemotaxis model, based on literature
values. These are the parameters used in the so-called literature-based
model. In the fitted model (see Section 4.4) the same parameter values
are chosen, except for N = 15 and N, = 9, which were obtained by fit-
ting to the data of Mattingly et al. [107]; we note that changing N and N,
also requires updating k 4 to keep the fraction ¢y of phosphorylated CheY

constant.
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where
1+ c/K;

f(C, m) = Nln(W

) + 8f,,(m —my). (4.9)

Here, the number of methylated sites of a cluster (not receptor) is denoted by m,
ranging from 0 to NM. The parameters are again taken from Shimizu et al. [165].
Their experimental results indicate that 8f,, = —2kgT, m, = —N/2. Kamino et al.
[82] report ligand dissociation constants of K, = 2900 uM for active receptors and
K; = 18 uM for inactive Tar receptors (for MeASP). Note that in the equations we
assume units such that kgT = 1.
The dynamics of methylation in our model are described by the following mean-
field equation
dm

W = (1 - pa(ca m))kR - pa(c’ m)kB . (4-10)
The system reaches a steady state for the adapted activity p,(c, m) = a, where

_ ke
" krt+kg®

a (4.11)

The steady-state methylation m* can be obtained from Egs. (4.8) and (4.9) by solving

pa(c, m*) = ag:
In ( 1+c/K; ) +1In ( 1—a0>
1+C/Ka [e]s)
_5fm ’

To characterize the methylation timescale, we linearize the dynamics of m(t)
around the steady state (at constant ligand concentration c(t) = ¢g). To first or-
der, we can write

m* =mgy + (4.12)

dm m(t) — m*

=7 4.13

dt T (4.13)
where 7, is the characteristic timescale of the methylation dynamics. We find 7,

by expanding p, [Eq. (4.8)] around m = m*:

op
(c;m) = pole,m*) + 2 (m—m*) + O(m?)
Pa Pa om| . (4.14)
= ao[1 = (1 — ap)(m — m*)] + O(m?),
and then plugging this first-order expansion into Eq. (4.10) to get
ok
dm _ Sm(m —m7). (4.15)

dr kgl + kg
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By comparing with Eq. (4.13) we find that for small perturbations, the timescale for
methylation to approach steady state is given by

3 kz! + kgt
f—

Thus, the parameters kg and ki determine two important characteristics of the
methylation system: the adapted activity a, and the methylation time scale 7,,,.
Shimizu et al. [165] report an adapted activity of a, = 1/3 and based on experimen-
tal data [107, 165] we assume a methylation time scale of 7, = 10s. Our parameter
choice, which is consistent with both of these observations, is kg = 0.075s~! and
kg =0.15s71.

CheY is phosphorylated by CheA, the receptor-associated kinase. The kinase ac-
tivity is directly linked to the activity of a receptor cluster. Therefore, we assume that
CheY is phosphorylated by active receptor clusters. Dephosphorylation of CheY-p
is catalyzed by the phosphatase CheZ, which we assume to be present at a con-
stant concentration. The CheZ-catalyzed dephosphorylation rate was reported to
be 2.2s7! for attractant response and 22 s~! for repellent response [174]. Based on
this data, we use the approximate dephosphorylation rate k, = 10s~! in our model.
In the fully adapted state the fraction of active receptors is ay and therefore the mean
fraction of phosphorylated CheY, ¢y = [CheYp]/([CheY] + [CheYp]), is given by

(4.16)

aochA

= 4.17
kZ + aochA ( )

by

In the fully adapted state the phosphorylated fraction was found to be ¢y =~ 0.16
[173]. Hence, we infer a phosphorylation rate of ky = kz¢y/(agN.(1 — ¢y)) =
0.015s~! for the literature-based model. Accordingly, for the “fitted model”, based
on fitting K(t) and N(t) to those measured by Mattingly et al. [107], we use a larger
phosphorylation rate due to the smaller number of clusters N,.

4.2.2 Reaction Kinetics

Since the timescale of conformational switching of active and inactive receptors and
ligand binding is much faster [134] than the timescale of phosphorylation or methy-
lation, we don’t explicitly model ligand (un)binding and conformational switching.
Each cluster is characterized by its methylation state m. This ranges from 0 to the
total number of methylation sites, which equals the number of sites per receptor M
times the number of receptors per cluster N. In our Gillespie simulation, each pos-
sible state of a cluster is its own species, i.e., we have species C,,, form =0, ... , NM.
Overall, our chemotaxis model consists of four types of reactions that describe (a)
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the methylation of a receptor C,, — C,,;1, (b) the demethylation of a receptor
Cy = Cpu_1, () the phosphorylation of CheY C,, +Y — Cy, + Y, and (d) the sin-
gle dephosphorylation reaction Y, — Y. Thus, due to the combinatorial explosion
of receptor states, the system has a total number of 3NM + 2 elementary reactions
(which amounts to 75 reactions in the literature-based model and 182 reactions in
the fitted model).

The ligand-concentration dependent methylation rate for C,, — C,,, is given
by

K (csm) = (1 = palc, m)kg. (4.18)

The term 1 — p,(c, m) is needed because only inactive receptors can be methylated.
The demethylation rate for C,, — C,,_; is given by

kpm—(c,m) = pa(c’ mkg (4.19)

where only active receptors can be demethylated. These zero-order dynamics of
(de)methylation of receptors lead to the adaptive behavior of the chemotaxis system
as described above.

Only active receptors can phosphorylate the CheY protein using the receptor-
associated kinase CheA. We therefore model phosphorylation as a reaction C,,, +
Y - C,, + Y, with rate

kY—»Yp (c,m) = pa(c, mky (4.20)

where k4 is a constant that represents the phosphorylation rate of an active cluster.
The dephosphorylation Y, — Y is carried out by the phosphatase CheZ at a constant
rate k, = 10s7L.

4.3 Mutual Information Rate for the Chemotaxis System
in the Gaussian Approximation

To test the validity of the Gaussian approach used by Mattingly et al. [107], we also
compared the exact PWS results for our discrete, stochastic model to the predic-
tion of the Gaussian approximation for this same model. In continuous time, the
information transmission rate R(S,X) of a Gaussian system in steady state can be
computed exactly from the power spectral density functions of the system [194]:

__L (" [Bx(@)]?

Here, the power spectral density Fg(w) is defined as

Bys(w) = f dt e Cop(1) (4.22)
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where Cop(t; —t;) = (a(t;)B(¢;)) denote the stationary (cross-)correlation functions
of the system.

Thus, we need to obtain the (cross-)correlation functions to compute the infor-
mation rate in the Gaussian framework. In their experiments with E. coli bacteria,
Mattingly et al. [107] don’t obtain these correlation functions directly, however. In-
stead, they obtain three kernels, V(¢t), K(t) and N(t), from which the correlation
functions can be inferred. We follow this approach for calculating the Gaussian
information transmission rate.

4.3.1 Computing the Gaussian information rate using linear
response kernels V(t), K(t), and N(t)

V(t) denotes the autocorrelation function of the swimming velocity of bacteria, i.e.,
V(t) = (Ue(T)Ui(T + £)). As explained in Section 4.1, the swimming dynamics of
the bacteria determine the statistics of the input signal s(t) = % In ¢(t), where c(t)
is the ligand concentration as experienced by the bacterium and g is the gradient
steepness. The input signal correlation function, denoted by Cg(t), can then be
expressed as

Css(0) = gZV(t) . (4.23)

The response kernel, denoted by K(t), represents the time evolution of the average
activity of the receptors in response to an instantaneous step change in the input
concentration. More precisely, K(t) is defined as

K(t) = 6(t)a(t) — ap) In (f—s (4.24)
0

where we assume the input concentration jumps instantaneously from ¢, to cg at
time t = 0. 6(t) is the Heaviside step function. Note that because the signal s(t) is
defined as the time-derivative of the concentration c(t), a step-change in c(t) corre-
sponds to a delta impulse in s(t). Thus, K(¢) describes the deterministic dynamics
of the system after being subjected to a delta stimulus s(t) = &(¢), making K(t)
the Green’s function of the system. The activity a(t) resulting from arbitrary time-
dependent signal s(¢) can be written as a convolution of K(t) with s(t)

t

a(t) =ag + / dt' K(t —t")s(t") + ng(t) (4.25)

where 7,(t) is the receptor activity noise. We define the response x(t) = a(t) —
ao- Assuming the input statistics are stationary and described by the correlation

70



4.3 Mutual Information Rate for the Chemotaxis System in the Gaussian
Approximation

function Cy(t), it is easy to show that the cross-correlation between s(t) and x(t) is
given by

t
Cox(t) = (s(D)x(T + 1)) = f dt' K(t —t")Cg(t'). (4.26)

In other words, the cross-correlation between s(¢) and x(¢) is given by the convolu-
tion of the response kernel with the input correlation function.

The noise kernel N(¢) describes the autocorrelation of the activity fluctuations in
the absence of an input stimulus. In particular, N(t) = (n,(T)n,(t + t)).

We now rewrite Eq. (4.21) for the mutual information rate in terms of the three
kernels described above. We express the power spectra B g(w) in terms of the Fourier-
transformed kernels V(w), K(w), and N(w). In Section 4.1 we already showed that
By(w) = g*V(w). The cross power spectrum is given by B, (w) = K(w)Bs(w) which
follows from Eq. (4.26). Finally, from Ref. [194] we use the identity B, (w) = By(w)|K(w)|*+
N(w) to express the output power spectrum. We insert these expressions into Eq. (4.21)

which yields
R(S,20) = o f do ln<1 + W) 4.27)

Then, for shallow gradients, we can make a Taylor approximation in g to obtain

+0(g"). (4.28)

_& (7 V@K@
R(S,X)— E/:mdww

This result shows that the information rate in shallow gradients is proportional to g2
and the proportionality constant is determined by the measured kernels. Mattingly
et al. [107] obtain the relevant kernels V(w), K(w), and N(w) from experiments by
fitting phenomenological models to their single-cell data. We obtain the kernels
from the simulation outputs of our stochastic chemotaxis model.

4.3.2 Estimating the kernels from simulations
Response Kernel K(t)

To compute the response kernel from simulations of our model, we study how the
system responds to a sudden increase in ligand concentration. First, we allow the
system to reach steady state by adapting it to an initial ligand concentration of ¢y =
100 uMm for t, = 50s. At time ¢ = t,, we instantaneously increase the concentration
by 10% to ¢y = ¢y + 0.1cy. We then record the system’s response over the next 200,
sampling at intervals of 0.01s.
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Rather than directly obtaining the receptor activity from the simulations, we fol-
low the experimental approach of inferring the receptor activity from the phospho-
rylated CheY levels. Specifically, we record the fraction f(t) = [Y,]/[Y] between
phosphorylated and unphosphorylated CheY. Since the copy number of CheY is
relatively large, this fraction serves as a good proxy for the activity a(t). We relate
the f(¢) to the activity a(t) via the expression

kz
kaN,

a(t) = f@® (4.29)
where k4 and k are the phosphorylation and dephosphorylation rate, respectively,
and N, is the number of receptor clusters.

Finally, we estimate the response Kernel K(t) by averaging the changes in mea-
sured activity over 10° simulated trajectories

K() =1In (E-(S)) (alt — to) — alty)). (4.30)

Output Noise Kernel N(t)

We can similarly obtain the noise statistics of the output from simulations of our
chemotaxis model. In this case, we stochastically evolve the chemotaxis model at
constant ligand concentration ¢, = 100 uM for a very long time of 1 X 10*s. The
result is a time trace of the activity a(t), which we again obtain from the fraction f(t)
using Eq. (4.29). We discretize this time trace at a resolution of 0.01s. This results
in a time series @ = (aj, ...,ay)T where a; = a(t;). To estimate the correlations
in the time series we subtract the overall average activity from each data point and
thus obtain the data vector x where x; = a; — Z?’Zl a;/N. From x we estimate the
auto-correlation function Cy,(t) = (x(7)x(7 + t)) of the activity. To obtain precise
results we average the correlation function for 10° trajectories.

Obtaining the Fourier Kernels using the FFT

To compute the Gaussian information rate, we need the frequency-space represen-
tations of the kernels V(¢), K(t), and N(¢t). We already derived the analytical form
of V(w) in Section 4.1. We obtain K(w) and N(w) numerically via a discrete Fourier
transform of the corresponding time-domain kernel.

As explained above, we compute time-discretized kernels K; = K(t;) and N; =
N(t;) from time traces obtained via stochastic simulations of our model. We sam-
ple these functions at the instants ¢, ..., ty_;, the sampling frequency being f; =
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100Hz. Then, we use the discrete Fourier transform (DFT) to obtain approxima-
tions for K(w) and N(w) as follows. The DFT coefficients K}, are given by

N-1

Ry = ) Kpe 2mnkiN (4.31)

n=0
where k = 0,1, ..., N — 1. These DFT coefficients can be computed efficiently using
the Fast Fourier Transform (FFT) algorithm. The DFT provides point estimates for
the Fourier-domain kernel K(w) at discrete frequencies

27 fok
=N K
i.e., K(wy) ~ K. This approximation introduces some level of error, known as
spectral leakage, due to the finite duration and sampling of the signal. This error
can be reduced by multiplying the time-domain kernel with a window function.
Thus, before computing the DFT, we multiply the kernel with a Hanning window,
which is a smooth function that tapers at the edges of the kernel, reducing the effect
of discontinuities at the beginning and end of the time series. The Hanning window
is defined as:

Wy =0,1,.,N—1, (4.32)

1 27n
h, = 3 [1 - COS(W)]’ n=0,1,..,N—1. (4.33)

The windowed kernel k,, is obtained by multiplying the time-domain kernel K,, with
the Hanning window h,,:

k, = Knh,, n=0,1,..,N—1 (4.34)

Using the FFT algorithm we then compute the DFT coefficients k, of the windowed
kernel.

The procedure described above to obtain the DFT coefficients kj from K(t) is also
applied to N(t) to obtain the coefficients 7.

We can then evaluate the information rate using Eq. (4.28) by discretizing the in-
tegral /' dw F(w) — 3, Aw F(w;) with Aw = 27 f;/N. More precisely, we compute
the Gaussian information rate as

2 N-1 g2
R(S,X) = f—ﬂ 3 Aw % (4.35)
k=0

4.4 Results

We first asked whether our chemotaxis model based on the current literature can re-
produce the information transmission rate as recently measured by Mattingly et al.
[107]. In what follows, we call this model the “literature-based” model.
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4.4.1 Discrepancy between experimental results and
literature-based model

In our model, the output is the concentration of phosphorylated CheY, while in the
experiments of Mattingly et al. [107] it is the average activity of the receptor clus-
ters as obtained via FRET measurements. We argue that this difference does not
significantly affect the obtained information rates, and thus, that it is valid to com-
pare our results to the experiments. In particular, since the copy number of CheY is
much larger than the number of receptor clusters, the fluctuations in CheY are dom-
inated by the extrinsic fluctuations coming from the receptor activity noise rather
than from the intrinsic fluctuations associated with CheY (de)phosphorylation. To
a good approximation, the copy number of phosphorylated CheY, Yp(¢), is thus a
deterministic function of the average receptor activity a(t). Mathematically, the
mutual information I(X;Y) between two stochastic variables X and Y is the same
as the mutual information I( f(X); g(Y)) for deterministic and monotonic functions
f and g. It follows that the mutual information between c(t) and Y p(t), is nearly the
same as that between c(t) and the receptor activity a(t). It is therefore meaningful
to compare the information transmission rates as predicted by our PWS simulations
to those measured by Mattingly et al. [107].

We use RR-PWS to compute the mutual information for the literature-based model.
Specifically, we measure the mutual information I(C, Y,; T) between the input tra-
jectory of the ligand concentration c(t) and the output trajectory of phosphorylated
CheY, yp(t), and where each trajectory is of duration T. With RR-PWS it is possible
to compute I(C, Yp; 7) for all 7 < T within a single PWS simulation of duration T by
saving intermediate results after each sampled segment, see Section 3.2. The recep-
tor states are considered hidden internal states, and we use the technique described
in Section 2.2 to integrate them out.

Figure 4.4a shows the PWS estimate of the information transmission rate for
cells swimming in gradients of different steepnesses g. The information transmis-
sion rate is obtained from the PWS estimate of the trajectory mutual information
I(C,Y,; T), different trajectory durations T. As seen in Fig. 4.4b, for short trajecto-
ries the mutual information increases non-linearly with trajectory duration T, but
in the long-duration limit the slope becomes constant. This asymptotic rate of in-
crease of the mutual information with T is the desired information transmission
rate R(C,Y,). The precise definition is given by

I(C,Y,; T
R(C,Y,) = Th_En g_

n —— (4.36)

We then compared our results for the information transmission rate of the literature-
based model to those of Mattingly et al. [107]. Figure 4.5c shows that the model pre-
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Figure 4.4: PWS simulations for the trajectory mutual information of chemotaxis in
the shallow gradient regime. a Mutual information I(Cr, Y1) between
input trajectories c(¢) and output trajectories y,(¢) as a function of tra-
jectory duration T. In each RR-PWS simulation, N = 7200 Monte Carlo
samples were used (M = 256 for the particle filter). b The information
transmission rate is defined as I(Cr, Y7)/T in the limit T — 0.

dictions differ from the experiments by a factor of = 4. Despite this discrepancy, we
believe that the agreement between experiment and theory is, in fact, remarkable,
because these predictions were made ab initio: the model was developed based on
the existing literature and we did not fit our model to the data of Mattingly et al.

Yet, the question about the origin of the discrepancy remains. The difference
between their measurements and our predictions could be attributed either to the
inaccuracy of our model or to the approximation that Mattingly et al. had to employ
to compute the information transmission rate from experimental data. Concern-
ing the latter hypothesis, due to the curse of dimensionality and experimental con-
straints, Mattingly et al. could not directly obtain the information transmission rate
from measured time traces of the input and output of the system. Instead, they mea-
sured three different kernels that describe the system in the linear regime. Specifi-
cally, they obtained the response K(¢) of the kinase activity to a step-change in input
signal, the autocorrelation function of the input signal V(¢), and the autocorrelation
N(t) of the kinase activity in a constant background concentration. Then they used
a Gaussian model to compute the information transmission rate from these mea-
sured functions K(¢t), V(t), and N(¢t) [194, 107] (see also Section 4.3). This Gaus-
sian model is based on a linear noise assumption and cannot perfectly capture the
true non-linear dynamics of the biochemical network. This could be the cause for
the observed discrepancies in the information rate. We have indeed already seen
in Chapter 3 that there can be substantial differences between exact computations
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Figure 4.5: Comparison of theoretical models with experimental data for bacterial
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chemotaxis system. Panels a and b show the response and noise kernels,
respectively, for the model based on literature parameters (green), pa-
rameters fitted to experiments (blue), and experiments from Mattingly
et al. [107] (orange). In panel c, the information transmission rate is
shown for each model as a function of gradient steepness, with results
from the Gaussian approximation shown alongside exact PWS calcu-
lations. The fitted model closely matches the experiments, while the
literature-based model over-estimates information transmission rate by
a factor of ~ 4 despite having a lower response amplitude (panel a). This
is because the literature-based model has a large number of indepen-
dents receptor clusters N, resulting in much lower noise in the output
(panel b). In all cases, the Gaussian approximation matches the exact
PWS results, providing support for the accuracy of the measurements of
Mattingly et al. [107].
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and the Gaussian approximation for the trajectory mutual information.

4.4.2 Revising the literature-based model

To uncover the reason for the discrepancy we first tested whether our literature-
based model reproduces the experimentally measured kernels. If the kernels do
not match, then, clearly, the discrepancy in the information rate may be caused by
the difference between our model and the experimental system, as opposed to the
inaccuracy of the Gaussian framework. Our input correlation function, V(¢), is, by
construction, the same as that of Mattingly et al. [107]. The simulation protocol we
used for measuring the other kernels was directly modeled after the experimental
protocol [107].

We find that the response kernel K(t) and the autocorrelation function of the
noise N(t) of our system are different. Figure 4.5a, b shows that our model repro-
duces the timescales of N(t) and K(t) as measured experimentally. This is perhaps
not surprising, because the decay of both N(t) and K(¢) is set by the (de)methylation
rate, which has been well-characterized experimentally. Yet, the figure also shows
that our model significantly underestimates the amplitudes of both N(¢) and K(t).

This raises the question of whether other parameter values would allow our model
to better reproduce the measured kernels K(t) and N(t), and, secondly, whether this
would resolve the discrepancy in information rate between our simulations and the
experiments.

The amplitude o% of the output noise correlation function N(t) is bounded by the
number of receptor clusters N.. In particular, the variance of the receptor activity
is 04 = 02/N. < 1/4N,, where 02 < 1/4 is the variance of the activity of a single
receptor cluster. Comparing this bound to the measured receptor noise strength
o% reveals that N, needs to be much smaller than our original model assumes: the
number of clusters needs to be as small as N, < 10. Indeed, Fig. 4.5b shows that with
N. = 9, our model quantitatively fits the correlation function N(¢) of the receptor
activity in a constant background concentration, as measured experimentally [107].

The amplitude of K(t), i.e. the gain, depends on the ratio K5/K}, of the disso-
ciation constants of the receptor for ligand binding in its active or inactive state,
respectively, as well as on the number of receptors per cluster, N. Both dissociation
constants have been well characterized experimentally [95, 165], but the number of
receptors per cluster has only been inferred indirectly from experiments [82, 165].
The higher gain as measured experimentally by Mattingly et al. [107] indicates that
N is larger than assumed in our model: with N = 15 our model can quantitatively
fit K(t) (Fig. 4.5a).

We thus find that by reducing the number of clusters from N, = 400 to N, = 9
while simultaneously increasing their size from N = 6 to N = 15, our model is able
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PWS Estimate for the Fitted Chemotaxis Model

In the main text, we described that a chemotaxis model with N, = 9 recep-
tor clusters, each containing N = 15 receptors, matches the experimental
kernels of Mattingly et al. [107]. We then computed the information rate for
this model using both the exact PWS method and a Gaussian approximation.
How the rate in the Gaussian model is computed is described in Section 4.3.
Here, we describe briefly how we compute the exact rate using PWS.

While in principle the rate could be computed directly via PWS for the model
with N, = 9 and N = 15, the receptor activity noise was so large that obtain-
ing this estimate directly in a single PWS simulation proved to be inefficient.
Instead, we computed the rate via an extrapolation procedure. In particular,
we computed the rate for a series of models with N = 15, yet with N, going
down from 400 to 50. The rate for the model of interest, with N = 15 and
N, = 9, was then obtained by fitting this data to a simple polynomial and
then extrapolating to N, = 9.

In Fig. 4.7 we show the information rate for a range of values of N, and for dif-
ferent gradient steepnesses g. We see that the information rate increases non-
linearly with the number N, of independent clusters. Based on the assump-
tion that the information rate is zero in the limit N, — 0, we fit a quadratic
function R(N,) = aN, — bN? with positive coefficients a, b to the data. We
provide the fit coefficients for different gradient steepnesses g in Table 4.2.
From these fits we can obtain the extrapolated information rates for N, = 9
that are shown in the main text.

to quantitatively fit both N(¢) and K(t) [107], see Fig. 4.5 and Fig. 4.6 for their Fourier
representations. This suggests that the number of independent receptor clusters is
smaller than hitherto believed, while their size is larger.

4.4.3 Comparing the chemotaxis information rate of the models
against experiments

How accurately can our revised model reproduce the measured information rate,
and how accurate is the Gaussian framework for the experimental system in the
regime studied by Mattingly et al. [107]? In the revised model, called the “fitted
model”, with N, = 9 and N = 15, all key quantities for computing the information
transmission rate within the Gaussian framework, V(t), N(t) and K(t), are nearly
identical to the experiments of Mattingly et al. [107], see Fig. 4.5. Within the Gaus-
sian framework (see Section 4.3), the information transmission rate in our model is
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Figure 4.6: Fourier representation of the kernels for computing the information

transmission rate in the Gaussian approximation, the velocity power
spectrum V(w) [(mms~!)?], the squared frequency response |K(w)|?,
and the noise power spectrum N(w). The top-left panel shows the in-
dividual Fourier kernels as a function of frequency w for the different
models. On the top-right the normalized kernels are shown with lin-
ear axis scales. In the bottom panels the integrand for computing the
mutual information rate in the Gaussian approximation is shown. In
the bottom right, the area under the curves represents the proportional-
ity between the squared gradient steepness g2 and the information rate
(units bits~! mm™~2). In the bottom left plot, the integrand is multiplied
by w, so that with log scaling of the axes the area under the curve is equal
to the integral.
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Figure 4.7: The information rate as a function of the number of receptor clusters

N,. The cluster size is fixed at N = 15. The left panel shows the increase
of information rate as a function of gradient steepness for different val-
ues of N, including a line for the experimental data from Mattingly et al.
[107]. The right panel shows the same data but highlights the increase of
the information rate and when increasing the number of receptor clus-
ters. A quadratic fit (shown as dotted lines) is used to extrapolate the
information rate. All results were obtained using RR-PWS.

g (mm™!) a (bits™1) b (bits™)
0.1 0.234 x 1073 0.160 x 10~
0.2 0.814 x 1073 0.598 x 1076
0.3 1.74 x 1073 1.77 X 107
0.4 2.84 x 1073 3.39x 1076

Table 4.2: Fit coefficients for the information rate as a function of the number of
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clusters N,. These coefficients are for a quadratic function R(N.) = aN, —
bNZ.
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thus expected to be very similar to the experimentally measured one, and Fig. 4.5¢
shows that this is indeed the case. To quantify the accuracy of the Gaussian frame-
work, we then recomputed the information transmission rate for the revised model,
using exact PWS. We found that the result matches the Gaussian prediction very
well. For these shallow and static chemical gradients, the Gaussian model is thus
highly accurate. Our analysis validates a posteriori the Gaussian framework adopted
by Mattingly et al. [107].

4.5 Discussion

The application of PWS to the bacterial chemotaxis system shows how crucial it is to
have a simulation technique that is exact. Without the latter it would be impossible
to determine whether the difference between our predictions and the Mattingly data
[107] is due to the inaccuracy of the model, the inaccuracy of the numerical tech-
nique to simulate the model, or the approximations used by Mattingly and cowork-
ers in analyzing the data. In contrast, because PWS is exact, we knew the difference
between theory and experiment is either due to the inaccuracy of the model or the
approximations used to analyze the data. By then employing the same Gaussian
framework to analyze the behavior of the model and the experimental system, we
were able to establish that the difference is due to the inaccuracy of our original
model.

Our analysis indicates that the size of the receptor clusters in the E. coli chemo-
taxis system, N = 15, is larger than that based on previous estimates, N ~ 6
[113, 165, 82]. The early estimates of the cluster size were based on bulk dose-
response measurements with a relatively slow ligand exchange, yielding N = 6
[113, 165]. More recent dose-response measurements, at the single cell level and
with faster ligand exchange, yield an average that is higher, (N) ~ 8, and with a
broad distribution around it, arising from cell-to-cell variability [82]. Our estimate,
N = 15, based on fitting the response kernel K(t) to that measured by Mattingly
et al. [107], therefore appears reasonable. At the same time, the number of clusters,
obtained by fitting the noise correlation function N(t) to the data of Mattingly et al.
[107] is surprisingly low, N, ~ 10, given the total number of receptors, N, ~ 103-10*
[96]. Interestingly, recent experiments indicate that the receptor array is poised near
the critical point [83], where receptor switching becomes correlated over large dis-
tances. This effectively partitions receptors into a few large domains, which may
explain our fitted values for N and N,.

It has been suggested that information processing systems are positioned close
to a critical point to maximize information transmission [193, 112], although it has
been argued that the sensing error of the E. coli chemotaxis system is minimized for
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independent receptors [170]. Mattingly et al. have demonstrated that the chemo-
tactic drift speed in shallow exponential gradients is limited by the information
transmission rate [107], but whether the system has been optimized for information
transmission, and how the latter affects chemotactic performance in other spatio-
temporal concentration profiles, remain interesting questions for future work.
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5 The Accuracy of the Gaussian Approximation

Age Tjalma and Manuel Reinhardt

Efficient information processing is crucial for both living organisms and engineered
systems. The mutual information rate, a core concept of information theory, quan-
tifies the amount of information shared between the trajectories of input and output
signals, and allows to quantification of information flow in dynamic systems. A com-
mon approach for estimating the mutual information rate is the Gaussian approxima-
tion, which assumes that the input and output trajectories follow Gaussian statistics.
However, this method is limited to linear systems, and its accuracy in nonlinear or dis-
crete systems remains unclear. In this work, we assess the accuracy of the Gaussian
approximation for non-Gaussian systems by leveraging Path Weight Sampling (PWS),
a recent technique for exactly computing the mutual information rate. In two case
studies, we examine the limitations of the Gaussian approximation. First, we focus
on discrete linear systems and demonstrate that, even when the system’s statistics are
nearly Gaussian, the Gaussian approximation fails to accurately estimate the mutual
information rate. Second, we explore a continuous diffusive system with a nonlinear
transfer function, revealing significant deviations between the Gaussian approxima-
tion and the exact mutual information rate as nonlinearity increases. Our results pro-
vide a quantitative evaluation of the Gaussian approximation’s performance across
different stochastic models and highlight when more computationally intensive meth-
ods, such as PWS, are necessary.

This chapter was written by Age Tjalma and Manuel Reinhardt as shared first authors, in collaboration
with Anne-Lena Moor (MPI-CBG Dresden), and Pieter Rein ten Wolde.
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For the functioning of both living and engineered systems it is paramount that
they collect and process information effectively. Increasingly, it has become evi-
dent that beyond instantaneous properties, the dynamic features of an input signal
or system output often encode valuable information [194, 195, 107, 119, 152, 72].
Prime examples in biology include bacterial chemotaxis, which responds to tempo-
ral changes in concentration [162], the transcription factor NF-xB, which encodes
information about input signals in its dynamic response [31], and neuronal infor-
mation processing, where information is encoded in the sequence and timing of
spikes [177]. Beyond biology, dynamic input signals are critical for various sensing
systems, such as those used in automated factories or self-driving cars.

To understand and evaluate the performance, potential improvements, and lim-
itations of these systems in processing information, we need appropriate metrics
that capture their full information processing capability. Information theory, intro-
duced by Shannon [164], provides the most general mathematical framework for
such metrics. The mutual information and mutual information rate measure how
much one random variable reduces uncertainty about another, quantified in bits.
It is relatively straightforward to quantify the information shared between scalar
properties of the input and output, as has been done in various forms [210, 27, 45,
135, 26, 10, 157, 187, 186]. However, capturing all information in dynamical prop-
erties of the input and the output, is much more challenging. To do so, one must
consider the information encoded time-varying trajectories of the variables of in-
terest. Yet, due to the high dimensionality of the trajectory space, computing the
mutual information between such trajectories is notoriously difficult.

A major advancement in this area has been the Gaussian approximation of the
mutual information rate [194, 195], based on the assumption of input and output
trajectories following jointly Gaussian statistics. This assumption makes it possi-
ble to compute the mutual information rate directly from the two-point correlation
functions of the input and output. It is thus straightforward to apply the Gaussian
approximation to experimental data. Moreover, given a mechanistic model of the
underlying dynamics, the Gaussian approximation can be used to derive analyti-
cal expressions for the information rate [194, 195, 107]. Crucially however, the as-
sumption of Gaussian statistics restricts the method to linear systems, as Gaussian
statistics can only arise in such systems [30].

Understanding when the Gaussian approximation is accurate is critical because
many real-world systems, such as biological and engineered sensory systems, ex-
hibit nonlinear dynamics. This includes features such as bimodality, discrete jumps,
or heavy tails, all of which deviate from purely Gaussian dynamics. Such non-
Gaussian behavior typically results from intrinsic nonlinearities in the system, but
determining the degree of a system’s deviation from linearity is difficult [190, 35,
115], and the extent to which the approximation loses accuracy in nonlinear sys-
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tems is unclear. Thus, although the Gaussian approximation offers a computation-
ally simple framework to estimate information transmission, it remains an open
question under what conditions this approximation is sufficiently accurate.

Until recently, addressing this question has been hard because there was no reli-
able benchmark for the exact information rate. Without a method to compute the
true information rate of a non-Gaussian system, it is impossible to rigorously assess
the accuracy of the Gaussian approximation. This gap was filled by the develop-
ment of two independent methods [152, 119] for computing the information rate
accurately even in systems that significantly deviate from Gaussian behavior. Here
we leverage one of these methods: Path Weight Sampling (PWS) [152]. This is a
Monte Carlo technique which is an exact method for calculating the mutual infor-
mation rate in a wide range of stochastic models.

Using PWS, we can directly evaluate the accuracy of the Gaussian approximation
in models that exhibit explicit non-Gaussian features, and study the approximation’s
robustness in typical applications.

In this article, we investigate the accuracy of the approximate Gaussian informa-
tion rate through two case studies. The first focuses on Markov jump processes,
where the statistics are non-Gaussian due to the discrete nature of the processes.
Perhaps surprisingly, the Gaussian approximation fails to accurately estimate the
mutual information rate in this case, even when the statistics are nearly Gaussian
[119, 152]. We show that a recently developed reaction-based “discrete approxima-
tion” by Moor and Zechner [119] is much more accurate. This suggests that the
Gaussian approximation fails because it cannot distinguish the individual reaction
events.

The second case study examines a continuous diffusive process with a nonlin-
ear transfer function. We demonstrate how intrinsic nonlinearity can cause signif-
icant deviations between the Gaussian approximation and the true mutual infor-
mation rate. By varying the degree of nonlinearity as well as the system’s response
timescale, we provide a comprehensive quantitative understanding of the Gaussian
approximation’s limitations in nonlinear systems. Additionally, we show that for
such systems, the Gaussian approximation differs significantly when derived from
empirical correlation functions compared to when it is analytically obtained from
the nonlinear model, highlighting that the correct application of the approximation
is important.

Our work translates into concrete recommendations on when to use which method
for the computation of the information rate. It therefore enables researchers to more
confidently determine when a simpler approximate method is sufficient, or when a
more sophisticated method like PWS [152] or the method developed by Moor and
Zechner [119] should be used.
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5 The Accuracy of the Gaussian Approximation

5.1 Methods

5.1.1 The mutual information rate

The mutual information between two random variables S and X is defined as

1(S,X) = ff P(s, x)In P(()SP’E)) dsdx, (5.1)

or, equivalently, using Shannon entropies

1(S,X) = H(S) + H(X) — H(S, X)
= H(S) — H(S|X) (5.2)
= H(X) — H(X|S).

In the context of a noisy communication channel, S and X represent the messages
at the sending and receiving end, respectively. Then, I(S, X) is the amount of infor-
mation about S that is communicated when only X is received. If S can be perfectly
reconstructed from X, then I(S,X) = H(S). On the contrary, if S and X are in-
dependent, I(S,X) = 0. The mutual information thus is always non-negative and
quantifies the degree of statistical dependence between two random variables.

For systems that continuously transmit information over time, this concept must
be extended to trajectories St = {S(¢) | t € [0, T]} and X7 = {X(t) | t € [0, T]}. The
mutual information between trajectories is defined analogously as

P(ST’xT) >
P(s7)P(x7)

where the expected value is taken with respect to the full joint probability of both
trajectories. This quantity can be interpreted as the total information that is com-
municated over the time interval [0, T].

Note that the total amount of information communicated over the time-interval
[0, T is not directly related to the instantaneous mutual information I(S(t), X(t))
at any instant ¢t € [0, T]. This is because auto-correlations within the input or out-
put sequences reduce the amount of new information transmitted in subsequent
measurements. Moreover, information can be encoded in temporal features of the
trajectories, which cannot be captured by an instantaneous information measure.
Therefore, as previously pointed out [112, 49], the instantaneous mutual informa-
tion I(S(t), X(t)) for any given ¢ does not provide a meaningful measure of informa-
tion transmission. To correctly quantify the amount of information transmitted per
unit time we must consider entire trajectories.

For that reason, the mutual information rate is defined via the trajectory mutual
information. Let the input and output of a system be given by two continuous-time

I(ST’XT) = <1n (53)
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5.1 Methods

stochastic processes § = {S(¢t) | t € R} and X = {X(¢) | t € R}. Then, the mutual
information rate between 8§ and X is

R(S,%) = lim —I(Sp.Xp), (5.4)

and quantifies the amount of information that can reliably be transmitted per unit
time. The mutual information rate therefore represents an excellent performance
measure for information processing systems.

In summary, the mutual information rate is the crucial performance metric for
stochastic information processing systems. However, its information-theoretic def-
inition does not translate into an obvious scheme for computing it. As a result,
various methods have been developed to compute or approximate the mutual infor-
mation rate.

5.1.2 Gaussian Approximation

One way to significantly simplify the computation of the information rate, is to as-
sume that the input and output trajectories obey stationary Gaussian statistics. Un-
der this assumption Eq. (5.3) simplifies to,

|Cosl|Cocx|

1
I(ST,XT) = 5 In |Z|

, (5.5)
where |Cy| and |C,,,| are the determinants of the covariance matrices of the respec-
tive trajectories Syo 7 and Xjo 71, and

C C
z=(Cs Sx) 5.6
(cxs Cy (56)

is the covariance matrix of their joint distribution.

In the limit that the trajectory length N = T/A, with the discretization A, becomes
infinitely long (N — o0) and continuous (A — 0), the information rate as defined in
Eq. (5.4) can be expressed in terms of the power spectral densities, or power spectra,
of the processes 8§ and X [194, 195]:

_ 1 (" |Ssx(@)P?
R(S,X) = —Ef_mdwln(l—W)

Here, Sgs(w) and Sy, (w) respectively are the power spectra of trajectories generated
by 8 and XX, and S, (w) is their cross-spectrum. The fraction

Ssx(c)[?
Ss5()Sxx(w)

(5.7)

Psx(w) = (5.8)
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5 The Accuracy of the Gaussian Approximation

is known as the coherence, describing the distribution of power transfer between 8§
and X over the frequency w.

For systems that are neither Gaussian nor linear, there are two ways to still ob-
tain an approximate Gaussian information rate. The first is to directly measure two-
point correlation functions from data or simulations, and use these to retrieve the
power spectra in Eq. (5.7). The second is to use van Kampen’s linear noise approxi-
mation (LNA) and approximate the dynamics of the system to first order around a
fixed point [201], see also Section 5.4.1. In this work, we will analyze both of these
methods.

5.1.3 Path Weight Sampling for diffusive systems

To evaluate the accuracy of the Gaussian information rate for non-Gaussian sys-
tems, an exact method for determining the true information rate is required. Re-
cently, a method called Path Weight Sampling (PWS) was developed, which com-
putes the exact mutual information rate using Monte Carlo techniques without re-
lying on approximations [152].

In Ref. [152], PWS was introduced as a computational framework for calculat-
ing the mutual information rate in systems governed by master equations. Master
equations provide an exact stochastic description of continuous-time processes with
discrete state-spaces, commonly used in models ranging from biochemical signal-
ing networks to population dynamics. However, many systems are not described by
discrete state spaces and instead require a stochastic description based on diffusion
processes or other stochastic models. Fortunately, PWS is not restricted to systems
described by master equations and can be extended to a variety of stochastic models.

In general, PWS can be applied to any system that meets the following condi-
tions: (i) sampling from the input distribution P(s7) is straightforward, (ii) sam-
pling from the conditional output distribution P(x7 | s7) is straightforward, and
(iii) the logarithm of the conditional probability density In P(x7 | st), referred to as
the path weight, can be evaluated efficiently. For any stochastic model that satisfies
these three criteria, the PWS computation proceeds similarly to systems governed
by master equations.

Briefly, PWS computes the trajectory Mutual Information using a Monte Carlo
estimate of Eq. (5.3)

Zil [lnP(x?F ) s‘T) - lnP(xiT)]
N

(5.9)

where s}, ,s’}] are independently drawn from P(st), and each xiT is drawn from

P(x7 | sfr). As N — oo, this expression converges to the mutual information
I(St,X7). In Eq. (5.9), the term In P(x7 | s7) can be evaluated directly (per crite-
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5.2 Case Studies

rion iii), but the marginal probability P(x7) has to computed in separately for each
output trajectory x+.. Typically, this has to be done numerically via marginalization,
i.e., by computing the path integral

P(xy) = f dsy P(sp)P(xy | s1) (5.10)

using Monte Carlo techniques. Evaluating the marginalization integral efficiently is
essential for computing the mutual information using PWS and discussed in detail
in Ref. [152]. In summary, PWS is a generic framework that can be used beyond sys-
tems defined by a master equation as long as a suitable generative model satisfying
the three conditions above is available.

For this study, we extended PWS to compute the mutual information rate for sys-
tems with diffusive dynamics, described by Langevin equations. For such systems,
the aforementioned conditions are inherently fulfilled and PWS can be applied.
Specifically, in a Langevin system, both the input S; and the output X; are stochas-
tic processes given by the solution to a stochastic differential equation (SDE). Using
stochastic integration schemes like the Euler-Mayurama method, we can straight-
forwardly generate realizations s(t) and x(t) from the corresponding stochastic pro-
cess. These realizations are naturally time-discretized with the integration time step
At. For a time-discretized trajectory x = (x, ... , X, ), the path weight In P(x | 5) is—
up to a Gaussian normalization constant—given by the Onsager-Machlup action
[131]

n—1

2
1 [Ax; —v;At
InP(x|s)=— ), — ;> + const 5.11

1) ;mt( o) 10
where we used Ax; = x;,, — X;, and v; = f(x;,s;) is the deterministic drift, and
o(x;) represents the white noise amplitude. This expression captures the likelihood
of a particular trajectory, given the stochastic dynamics of the system, and serves as
the path weight in the PWS computation.

5.2 Case Studies

To investigate the conditions under which the Gaussian approximation deviates
from the exact mutual information rate, we conducted two case studies. In both
studies we compare the Gaussian approximation against the exact mutual informa-
tion rate, computed via PWS. In the first case study we focus on a discrete linear
system which is inspired by minimal motifs of cellular signaling.
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5 The Accuracy of the Gaussian Approximation

5.2.1 Discrete reaction system

We consider a simple linear reaction system of two species, S and X, whose dynam-
ics are governed by 4 reactions

3 —>s (5.12)
s g (5.13)
sP.s+x (5.14)
X4 g, (5.15)

The reaction system is linear because each reaction has at most one reactant. The
trajectories of S and X are correlated because the production rate of X depends on
the copy number of S, and therefore information is transferred from S to X. This
set of reactions can be interpreted as a simple motif for gene expression where S is
a transcription factor and X represents the expressed protein. In steady state, the
mean copy numbers are given by § = xA~! and X = Sou~L.

The exact stochastic dynamics of this reaction system can be expressed by the
chemical master equation [201]. This equation describes the time-evolution of the
discrete probability distribution over the possible copy numbers of species S and X,
capturing the noise from the chemical reaction events. From this description we
can obtain the mutual information rate from S to X without approximations using
PWS [152].

While the chemical master equation is an exact representation of the reaction
system, for large copy numbers the stochastic dynamics are well-approximated by
a linearized model around the steady state. The resulting Langevin equations can
be systematically derived from the master equation using the LNA which yields

$(t) = x — As(t) + ng(t) (5.16)
X(t) = ps(t) — ux(t) + nx(t) (5.17)

where s and x are continuous variables representing the copy numbers of S and X,
and 7,7, are independent delta-correlated white noise terms with (n?) = 245 and
(n%) = 2ux, see Section 5.4.1.

The Gaussian approximation of the mutual information rate is derived from the
LNA description. Using this framework, Tostevin and ten Wolde [194] computed
an analytical expression for the mutual information rate of the motif in units of

1
Al ]
RGaussian = D) ( 1+ % - 1) . (5.18)

nats s
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More recently, Moor and Zechner [119] have derived a different expression for
the mutual information rate of this reaction system by analytically approximating
the relevant filtering equation, which is derived from the master equation, thus rec-
ognizing the discreteness of molecules. This approach explicitly differentiates the
contributions of individual reactions to the noise amplitude of each component,
while the LNA lumps their contributions together. As we will discuss in more de-
tail below, separately accounting for the noise from each reaction separately better
captures the information transmitted via discrete systems, making this “discrete ap-
proximation” more accurate than the Gaussian approximation for this case study.
Nevertheless, the result is still based on an approximation that is only accurate for
large copy numbers. The expression for the mutual information rate in the dis-
crete approximation appears remarkably similar to the expression obtained using
the Gaussian framework:

_A ] p
Rdiscrete - E ( 1+2 I - 1) . (519)

Note that this equation only differs from Eq. (5.18) by the additional factor 2 inside
the square root.

The natural—but incorrect—expectation is that for large copy numbers both ap-
proximations converge to the true mutual information rate. However, the difference
between Egs. (5.18) and (5.19) already reveals that the two approximations do not
converge. Indeed, previous work shows that even in the limit of infinite copy num-
bers, the Gaussian approximation only yields a lower bound to the information rate,
which is not tight [152, 119].

We compare both approximations against exact PWS simulations for different pa-
rameters. In Fig. 5.1a, we vary the mean copy number of the readout, X, by varying
its synthesis rate p and compute the mutual information rate using both approxima-
tions as well as PWS, while keeping the input copy number constant at § = 100. We
observe that the Gaussian approximation via the LNA [Eq. (5.18)] consistently un-
derestimates the mutual information rate. This confirms that even when §and X are
large, the Gaussian approximation only yields a lower bound to the information rate
of the discrete linear system. In contrast, the discrete approximation [Eq. (5.19)] co-
incides with the true mutual information rate obtained from PWS simulations over
all output copy numbers X, even for ¥ < 1.

In Fig. 5.1b, instead of varying the copy number of the output, we vary the copy
number of the input by varying the production rate x. Note that both the Gaussian
approximation and the discrete approximation are independent of k. Yet, we ob-
serve that the true mutual information rate is not. For sufficiently large input copy
numbers the discrete approximation coincides with the true information rate while
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Figure 5.1: The mutual information rate of a simple linear reaction system defined
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by Egs. (5.12) to (5.15). The black dots show the exact information rate,
computed with PWS. We compare both, the Gaussian approximation of
Tostevin and ten Wolde [194] and the discrete approximation of Moor
and Zechner [119] against the exact result. In panel (a), we use parame-
ters x = 100, A = 1, u = 1 while varying p. The mean output copy num-
ber is directly proportional to p with proportionality factor xA~1 = 100.
In panel (b), we fix p = 10, A = 1, u = 1, and systematically vary x.
As a consequence, we vary the mean input copy number § = ¥4}, and
simultaneously also the mean output copy number % = Sou~! = 108.



5.2 Case Studies

the Gaussian information rate remains only a lower bound. Thus, the discrete ap-
proximation is highly accurate for § > 10. For small x where § < 10, we find that
the mutual information rate deviates from both, the LNA as well as the discrete
approximation. Surprisingly, we find an optimal value of x for which the mutual
information rate is maximized and exceeds both approximations. This implies that
atlow input copy numbers, the system is able to extract additional information from
the discrete input trajectories, which is not accounted for by either of the approxi-
mations.

In all cases, we found that the Gaussian approximation deviates significantly
from the true information rate for this discrete system. Seemingly paradoxically,
the Gaussian approximation based on the LNA does not converge to the true infor-
mation rate at high copy numbers, even though the LNA approximates the stochas-
tic dynamics extremely well in this regime. In contrast, the discrete approximation
from Moor and Zechner [119] does not suffer from this issue. It has been shown that,
generally, the Gaussian approximation is a lower bound on the discrete approxima-
tion [119], prompting the question of which features of the discrete trajectories are
not captured by the Gaussian approximation. !

5.2.2 Nonlinear continuous system

Next, we study a nonlinear variant of the reaction system above. In contrast to the
previous case study, we deliberately avoid using discrete dynamics, as we already

n still unpublished work together with Anne-Lena Moor and Christoph Zechner [120], we found
that the root cause for the deviations of the Gaussian approximation lies in how the LNA approx-
imates the reaction noise in the chemical master equation. While the dynamics of the chemical
master equation give rise to discrete sample paths, i.e., piece-wise constant trajectories connected
by instantaneous discontinuous jumps, the LNA approximation yields continuous stochastic tra-
jectories. Our results imply that a discrete sample path of X carries more information about S
than the corresponding continuous sample path x(t) would carry about s(¢t) in the LNA. In the
collaborative effort [120] we found that this is ultimately due to the fact that in the discrete system,
each reaction event is unambiguously recorded in the X trajectories and thus different reactions
modifying the same species can be distinguished. In contrast, in the continuous LNA description,
all reactions that modify X contribute to the noise term 7),(t) in Eq. (5.17) but their contribu-
tions are lumped together and therefore cannot be distinguished from an observed x(t)-trajectory.
Specifically, note that for the motif studied here, only the production reaction S = S + X con-
veys information. The decay reaction of the output X — & does not carry information on the
input fluctuations since its propensity is independent of the input. Yet, it contributes to the over-
all fluctuations in the output. The Gaussian approximation only considers the total fluctuations
in the output, while the discrete approximation correctly distinguishes between the fluctuations
induced from production events and decay events. Therefore, the Gaussian approximation consis-
tently underestimates the true information transmission, whereas the discrete approximation does
not incur this systematic error. This subtle point is reflected in the difference between Egs. (5.18)
and (5.19).
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5 The Accuracy of the Gaussian Approximation

observed that the Gaussian approximation is generally inaccurate in such systems.
Instead, we focus solely on continuous Langevin dynamics to explore how an ex-
plicitly nonlinear input-output mapping affects the accuracy of the inherently lin-
ear Gaussian approximation. We hypothesize that the accuracy of the Gaussian
approximation will deteriorate as the degree of nonlinearity increases. To test this
hypothesis, we analyze a simple Langevin system with adjustable nonlinearity.

The system is defined by two coupled Langevin equations, one that describes the
input, and one that describes the output. The stochastic dynamics of the input s(¢)
are given by Eq. (5.16). The output dynamics of x(t) are given by

x(t) = pa(s) — ux(t) + nx(t) (5.20)
with the Hill function
S”
ifs>0
a(s) = | knesn D=0 (5.21)
0 ifs<O0

This function serves as a tuneable non-linearity with the Hill coefficient n. As
n — 0, the Hill function approaches a shallow linear mapping, while for large n,
it becomes sigmoidal and highly non-linear. As n — oo, a(s) approaches the unit
step function centered at s = K. The so-called static input-output relation specifies
the mean output X(s) for a given input signal s and is given by x(s) = pa(s)/u. The
gain of this system is then defined as the slope of this relation at s = §, i.e.,

_dx(s)| _ na(®[1—a@)]p
T 0s | us

N

: (5.22)

as derived in Section 5.4.1. Importantly, for § = K, the gain of the system is directly
proportional to the Hill coefficient n, i.e., the gain is directly coupled to the degree
of nonlinearity.

Figure 5.2 shows how, on average, the output x(¢) at a given time depends on the
input s(t) at that same time (solid colored curves). This is the so-called dynamical
input-output relation of a system [102]. The solid black curve represents the static
input-output relation. While the static input-output relation is purely determined
by the instantaneous function a(s), the dynamical input-output relation depends
not only on this function, but also on the timescale of the response 7, = u~!. The
reason is that as the output responds more slowly to the input, the temporal input
fluctuations are averaged out increasingly. Therefore, the response of the output
becomes shallower for increasing 7,,. Moreover, slower systems with more shallow
responses react approximately linear to the input (Fig. 5.2).

While using the Langevin extension of PWS we can directly compute the mutual
information rate of this nonlinear model, the Gaussian approximation can only be
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Figure 5.2: The dynamical input output relationship of the non-linear system with
a fixed static gain of g = 5 [Eq. (5.22)]. The upper panel shows the
static input-output relationship (solid black line) as well as the dynam-
ical input output relationship, i.e., the effective mapping from input to
output S(t) — X(t) (at the same time) for different output timescales
7, = u~l. The dynamical input-output mapping is defined as the
conditional expectation x4,(s) = E[X(f) | S(f) = s] and was esti-
mated non-parametrically from simulated trajectories of the system via
Nadaraya-Watson kernel regression [125, 207] with a Gaussian kernel
(bandwidth h = 0.5). Additionally, using the linear noise approxi-
mation we obtain linear input output mappings with a dynamical gain
g = g/(1 + t,) (see Section 5.4.1) which are displayed as dashed lines.
We observe that the linear mapping approximates the dynamical input
output relation well for s & § = 100 but cannot capture the nonlinear
saturation effect. The lower panel shows the stationary distribution of

s(t).
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Figure 5.3: The information rate of a non-linear system as a function of its gain over
a range of response timescales. We vary the static gain g by varying the
Hill coefficient n, see Eq. (5.22). A short response timescale corresponds
to a fast system (purple) while a long response timescale corresponds
to a slow system (yellow). The information rate was computed in three
different ways: (a) via the Gaussian approximation using the LNA to
estimate the required power spectra; (b) via the Gaussian approximation
using simulations to numerically estimate the required power spectra;
(c) exactly via PWS.

applied to linear systems. Therefore, to obtain the mutual information rate in the
Gaussian approximation, we have to linearize the system. There are two approaches
for linearizing the stochastic dynamics of this nonlinear system which result in dif-
ferent information estimates.

The first approach is to linearize Eq. (5.20) analytically via the LNA as shown in
Section 5.4.1. Within this approach we can obtain an analytical expression for the
information rate (see Section 5.4.1),

2 5
Rina = 5 (, [1+ g2)_c—’/‘.t - 1). (5.23)

This LNA based approach also yields a linearized dynamic input-output relation,
shown as dashed lines in Fig. 5.2.

We observe that the linearized input-output relation closely matches the slope of
the true nonlinear dynamical input-output relation at s = § = 100, but overall it
does not correspond to a (least-squares) linear fit of the nonlinear dynamical input-
output relation. For all values of s, the linearized input-output relation has a slope
greater than or equal to the slope of the dynamical input-output relation. Empiri-
cally, the LNA thus seems to over-estimate the dynamical gain of the system. The
reason may be that the LNA approximates the static input-relation (Fig. 5.2 black
curve), and estimates the linearized dynamical input-output relation based on this
static approximation only.
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The second “empirical Gaussian” approach to linearize the nonlinear system po-
tentially avoids these issues. In this approach, we first numerically generate tra-
jectories from the stochastic Egs. (5.16) and (5.20) and use digital signal processing
techniques to estimate the mutual information rate from the trajectories. We nu-
merically estimate the (cross) power spectra of input and response using Welch’s
method [133, see Ch. 11]. From the estimated spectral densities S’aﬁ(w) we com-
pute the coherence

|Sex(@)I?
Sss(@)Sxx (@)

which we use to obtain the Gaussian approximation of the mutual information rate
directly using Eq. (5.7).

The empirical power spectra characterize the linear response of a system, but not
in the same way as the LNA. While for linear systems the power spectra obtained via
the LNA match the empirical power spectra [206], for a nonlinear system, the em-
pirical power spectra and the coherence can differ from the corresponding LNA cal-
culations. The two linearization approaches are thus not equivalent. We tested the
accuracy of the Gaussian mutual information rate estimates using both lineariza-
tion approaches to elucidate the differences in these approaches.

Figure 5.3 displays the mutual information rate obtained via two linearized ap-
proximations as well as the exact PWS result. We vary the gain g and the response
time-scale 7., both of which significantly affect the shape of the dynamical input-
output relationship. As expected, a larger gain or a faster response time lead to an
increase in the mutual information rate. At large gain, the information rate natu-
rally saturates as a(s) approaches a step function. The saturation effect is clearly
seen in the PWS results, and is found to be even more pronounced in the empir-
ical Gaussian approximation. The LNA-based Gaussian approximation, however,
shows no saturation. This highlights that the LNA linearizes the system at the level
of the input-output mapping a(s) which results in an approximation that is unaf-
fected by the sigmoidal shape of a(s). In contrast, the empirical approximation is
affected by nonlinear saturation effects because it is computed directly from simu-
lated trajectories. We thus see that both approximations yield substantially different
results at large gain.

In Fig. 5.4 we compare the absolute deviation between the approximations and
the PWS result. For small gain we see that both approximations are accurate which
is not surprising since the nonlinearity is very weak in this regime. Strikingly, for
large gain, the LNA-based approximation always overestimates the mutual infor-
mation rate while the empirical Gaussian approximation always underestimates the
rate. In both cases the systematic error decreases as the response timescale becomes
slower. This reflects the fact that for slow responders, the dynamic input-output re-

bsx(w) = (5.24)
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Figure 5.4: Deviation from the exact information rate for the approximate Gaussian
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information rate computed via LNA (top), and the approximate Gaus-
sian information rate computed via empirical estimates of the power
spectra (bottom). A deviation of 0 implies perfect accuracy. While
the absolute deviation of both approximations increases with increas-
ing gain and decreasing response timescale, the LNA based approach
consistently overestimates the information rate whereas the empirical
approach constitutes a lower bound. Moreover, in terms of absolute de-
viation, the empirical approach is more accurate across all parameter
values.



5.3 Discussion

lation is more linear (Fig. 5.2) than for fast responders.

Additionally, we computed the relative deviation, see Fig. 5.5 in Section 5.4.2.
We find that in terms of relative error the curves for different response timescales
largely overlap. In terms of relative approximation error, the gain, rather than re-
sponse timescale, is the primary factor affecting the accuracy of the Gaussian ap-
proximation.

5.3 Discussion

We investigated the accuracy of the Gaussian approximation for the mutual infor-
mation rate in two case studies, each highlighting a scenario where the approxima-
tion may be inaccurate. We were able to reliably quantify the inaccuracy in each
case by computing the “ground truth” mutual information rate for these scenarios
using a recently developed exact Monte Carlo technique called PWS [152].

We first considered linear discrete systems, which are relevant in biology due to
the discrete nature of biochemical signaling networks. In our example, the Gaus-
sian approximation cannot capture the full information rate, but only yields a lower
bound. We show that a discrete approximation, developed by Moor and Zechner
[119], is able to correctly estimate the mutual information rate of the network over
a wide range of parameters. Since the Gaussian approximation captures the sec-
ond moments of the discrete system, this finding demonstrates that a discrete sys-
tem can transmit significantly more information than what would be inferred from
its second moments alone. This perhaps surprising fact has been observed before
[25, 119, 152] and it hinges on the use of a discrete reaction-based readout. As
demonstrated in unpublished work [120], the increased mutual information rate
found for a discrete readout stems from the ability of unambiguously distinguishing
between individual reaction events in the readout’s trajectory. However, it remains
an open question whether biological (or other) signaling systems can effectively har-
ness this additional information encoded in the discrete trajectories. For systems
that cannot distinguish individual reaction events in downstream processing, the
Gaussian framework might still accurately quantify the “accessible information™.

A notable new observation in our first case study is the deviation between the
discrete approximation of the mutual information rate derived by Moor and Zech-
ner [119] and the exact result obtained using PWS [152] for inputs with low copy
number §. In the discrete approximation, the mutual information rate is indepen-
dent of the input copy number §, but the PWS simulations show that at low copy
numbers there is an optimal s* ~ 1 which maximizes the mutual information rate.
This surprising finding suggests that the information rate in discrete systems can
be increased by reducing the copy number of the input sufficiently, such that it
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only switches between a few discrete input levels. Notably, in the reverse case—
low output copy number X but large S—the discrete approximation always remains
accurate. We leave a precise characterization of this finding for future work.

The second example focused on a continuous but nonlinear system, where we
demonstrated that the accuracy of the Gaussian approximation depends on the lin-
earization method. Linearizing the underlying system dynamics directly via the
LNA leads to an overestimation of the information rate, while estimating the sys-
tem’s correlation functions empirically from data underestimates it. Regardless of
the method, the Gaussian approximation is more accurate in terms of absolute de-
viation of the true information rate when the gain of the system is small and its
response is slow compared to the timescale of the input fluctuations.

The result of our second case study—that the empirical Gaussian mutual infor-
mation rate underestimates the true rate—is consistent with theoretical expecta-
tions. As shown by Mitra and Stark [115], and highlighted in Ref. [195], an empir-
ical Gaussian estimate of the mutual information between a Gaussian input signal
S and a non-Gaussian output X provides a lower bound on the channel capacity
C(S,X) = maxp() I(S,X) (subject to a power constraint on S). Specifically, they
show that C(S,X) > I(Sg;X) > I(Sg;Xg), where (Sg,Xg) is a jointly Gaussian
pair with the same covariance matrix as (S, X). For purely Gaussian systems like
(Sg,Xg), the mutual information calculated using Eq. (5.7) is exact and equal to the
channel capacity. However, for systems that have a Gaussian input but are other-
wise non-Gaussian, the mutual information is larger or equal than the correspond-
ing Gaussian model with matching second moments, as evidenced in Fig. 5.4. In
general, the empirical Gaussian approximation yields a lower bound on the mutual
information of the nonlinear system with a Gaussian input signal, as well as a lower
bound on the channel capacity of the nonlinear system.>

We can distill several concrete recommendations for the computation of the in-
formation rate from our analysis. For linear discrete systems, the Gaussian approx-
imation yields a lower bound on the true information rate which may accurately
quantify the information available to systems that cannot distinguish individual dis-
crete events. Alternatively, the reaction-based discrete approximation by Moor and
Zechner [119] is highly accurate, even when the copy number of the output is ex-
tremely small. However, when the copy number of the input becomes small (< 10),
both approximations break down and one must use an exact method. Exact meth-
ods for obtaining the information rate of any stochastic reaction-based systems are

“Note that this argument does not apply to the Linear Noise Approximation (LNA). The bound
specifically requires the Gaussian model to use the covariance of the full, original system. When
the system is first linearized using the LNA, the resulting linear model does not retain the same
covariance as the original nonlinear system. As a result, the mutual information rate calculated
with the LNA is generally not a lower (nor an upper) bound on the true mutual information rate.
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PWS [152] or brute-force numerical integration of the stochastic filtering equation,
as shown in [119]. For nonlinear continuous systems with small gain one can safely
use the Gaussian approximation, either based on a linearization of the underlying
dynamics or on empirically estimated correlation functions. Moreover, when the
slowest input time-scale is more than a magnitude faster than the response time-
scale, the non-linear response of the system is “averaged out” by the quick input
fluctuations, and the Gaussian approximation yields accurate results. In this case,
using a Gaussian approximation based on empirical correlation functions yields the
most accurate result, and provides a rigorous lower bound for the mutual informa-
tion. Finally, if the system is both highly nonlinear and has a fast response with
respect to the input, one must resort to an exact method like PWS. We hope that
our results will guide future research in determining the appropriate method for
computing the mutual information rate.

Overall, our results greatly increase the usefulness of the Gaussian approxima-
tion for the information rate of non-Gaussian systems. The Gaussian approxima-
tion remains a useful method that can be applied directly and straightforwardly to
experimental data. Here, we have quantified the prerequisites to safely use this
approach. Moreover, we elucidate how an empirical Gaussian approximation con-
stitutes a lower bound on the true information rate for systems with a sufficiently
large input copy number.

5.4 Supplementary Information

5.4.1 Gaussian approximation

Here we derive the analytical expressions for the Gaussian information rate of the
networks considered in the main text. To this end we first discuss the dynamics of
the input signal S and its power spectrum. Then, we perform a linear approxima-
tion of the dynamics of the readout species X and derive the approximate Gaussian
information rate between S and X for the nonlinear network. Finally, we derive the
Gaussian information rate of the linear network from our expression of the Gaus-
sian information rate of the nonlinear network.

Signal

The input signal is generated by a birth-death process,

%) ? S, (5.25)
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Its dynamics in Langevin form are,
§=1x— As(t) + n(t), (5.26)

yielding the steady state signal concentration § = x/A. The independent Gaussian
white noise process 7,(t) summarizes all reactions that contribute to fluctuations in
S. The strength of the noise term in steady state is

(n2) =1+ A5 = 223. (5.27)

The power spectral density, or power spectrum, of a stationary process X is de-
fined as Sy, (w) = limp_, o %|XT(co)|2, where %(w) denotes the Fourier transform of
x(t). The power spectrum of a signal obeying Eq. (5.26) is thus given by

m3) _ 2is (5.28)

Sss(@) = W+ A2 w4 A2

Linear approximation

We now consider the readout X, which is produced via a nonlinear activation func-
tion a(s):

pa(s)
S——> S+ X,
(5.29)
X - @.
We define the activation level a(s) to be a Hill function,
__s@®)"
a(s) = Kt s (5.30)

Such a dependency, in which K sets the concentration of S at which the activation
is half-maximal and n sets the steepness, can for example arise from cooperativity
between the signal molecules in activating the synthesis of X.

We have for the dynamics of X in Langevin form

X = pa(s) — ux(t) + 9y (o), (5.31)

with a(s) given by Eq. (5.30). The steady state concentration of X is given by X =
ap/u, where we have defined the steady state activation level a = a(3). It is useful
to determine the static gain of the network, which is defined as the change in the
steady state of the output upon a change in the steady state of the signal:

g =0sx =rlu,

=n(1 — a)x/s, (5:32)
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where we have defined the approximate linear activation rate

r =na(l — a)p/s, (5.33)
and the steady state of the activation level is given by
- s"
a= T (5.34)

Generally, we assume that K = §, which entails that in steady state the network is
tuned to a = 1/2.

To compute the Gaussian information rate we approximate the dynamics of X to
first order around X via the classical linear noise approximation [201]. Within this
approximation the dynamics of the deviation dx(t) = x(¢t) — X are,

dx =rds(t) — udx(t) + n,(t), (5.35)

with the synthesis rate r given by Eq. (5.33).
In the linear noise approximation the noise strength is a constant given by the
noise strength at steady state,

(n2) = pa + ux = 2ux. (5.36)

Information rate

Following Tostevin & Ten Wolde [194, 195], we can express the Gaussian informa-
tion rate as follows,

00 2
R(S:X) = % / dcolog(1+ l'ﬁgz‘:;'lzsss(w)), (5.37)

where |K(w)|? is the frequency dependent gain and |[N(w)|? is the frequency depen-
dent noise of the output process XX. If the intrinsic noise of the network is not corre-
lated to the process that drives the signal, the power spectrum of the network output
obeys the spectral addition rule [180]. In this case the frequency dependent gain and
noise can be identified directly from the power spectrum of the output, because it
takes the following form:

Sex(@) = [K(w)[*Sss(e) + IN(@)]%. (5.38)

For a species X obeying Eq. (5.35), we have

2

s m (5.39)
NP = EL 2 |

U2+ w2 o+ w?
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The Wiener Khinchin theorem states that the power spectrum of a stochastic pro-
cess and its auto-correlation function are a Fourier transform pair. We thus obtain
for the variance in the readout, substituting the frequency dependent gain and noise
[Eq. (5.39)] and the power spectrum of the signal [Eq. (5.28)] in Eq. (5.38) and taking
the inverse Fourier transform at t = 0,

S
0% = ggot + 0l = —or 4+ %, (5.40)

where the signal variance equals its mean o2 = §, and the mean readout concen-
tration sets the intrinsic noise aj| ¢ = X. We further have the static gain g given by
Eq. (5.32), and have defined the dynamical gain

(6x(080) _ g
o'sz 1+ /1//1 ’

g= (5.41)

which is the slope of the mapping from the time-varying signal value s(t) to the

time-varying readout x(t); for Gaussian systems (x(t)|s(t)) = gs(t) [195, 102, 186].
To solve the integral in Eq. (5.37) we exploit that

f dwlog (wz + a2> = 27(a — b). (5.42)

w? + b?

Substituting the frequency dependent gain and noise given in Eq. (5.39) and the
signal power spectrum of Eq. (5.28) in Eq. (5.37) and using Eq. (5.42) we obtain the

information rate,
r2(n?
R(S;I)z%( 1+ <’7s>—1>,

(5.43)

where we used the noise strengths given in Eq. (5.27) and Eq. (5.36), we have the
static gain g of Eq. (5.32), and the synthesis rate r of Eq. (5.33).

Linear network

To disambiguate differences in the information rate caused by the linear approxi-
mation of our nonlinear reaction network on one hand and the Gaussian approxi-
mation of the underlying jump process on the other, we consider the information
rate of a linear network. Any difference between the exact information rate and the
Gaussian information rate must then be a result of the Gaussian approximation. To
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this end we use the same input signal [Eq. (5.26)], but we consider a linear activation
of the readout, i.e.

S5 S+X,
. (5.44)
X— @
such that the Langevin dynamics of X are
X = ps(t) — ux(t) + nx (1), (5.45)

which yields the steady state concentration X = 3p/u. For this linear readout, the
static gain is simply set by the ratio of steady states of the input and the output,
g = p/u = %/5. We can then obtain the information rate of this linear system by
substitution of its static gain in Eq. (5.43), which yields

R(8; ) = % ( 1+ /51 _ 1). (5.46)

This result is identical to that of Tostevin and ten Wolde [194, 195] (motif III).

5.4.2 Relative deviation of the Gaussian approximation for a
nonlinear system

Due to the definition of the mutual information, an absolute difference in informa-
tion maps to a relative difference in the reduction of uncertainty. For this reason,
Fig. 5.4 in the main text (Section 5.2.2) focuses on the absolute deviation between
the Gaussian approximation and the true mutual information. We compared two
variants of the Gaussian approximation, the LNA-based approximation and the em-
pirical Gaussian approximation. We found that in both cases the absolute deviation
decreases with slower response timescales, reflecting the more linear input-output
relationship in slow-responding systems.

However, the relative deviation of the Gaussian information rate from the true
rate also offers valuable insights, which we explore here. In Fig. 5.5 we compare
the relative deviation Rg,gian/Rpws between the Gaussian approximation and the
exact mutual information computed using PWS. We find that the relative deviation
increases as the system gain increases, indicating that the Gaussian approximation
also becomes relatively less accurate for larger gains. As already discussed above,
the empirical Gaussian method consistently underestimates the true information
rate, while the LNA-based approximation overestimates it.

Interestingly, we also observe that for the LNA approximation, at fast timescales
the result is slightly more accurate, whereas the empirical Gaussian estimate is more
accurate at slow timescales. We initially expected that in both cases slow timescales
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Figure 5.5: Relative deviation from the exact information rate for the approximate
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Gaussian information rate. The relative deviation was computed for
both the LNA-based approximation and the empirical Gaussian approx-
imation using numerically estimated power spectra, across varying sys-
tem gains and response timescales (see Section 5.2.2 for details). The
curves for different response timescales largely overlap, indicating that
the relative approximation error is primarily influenced by system gain
rather than response timescale. This highlights that system gain is the
dominant factor in determining the accuracy of the Gaussian approxi-
mation.
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would yield better agreement with PWS, as the input-output dynamics are more
linear for slow timescales, and thus better approximated by the Gaussian model.
The fact that this is not the case for the LNA approximation is intriguing, indicat-
ing the need for further investigation into the interplay between timescales, system
nonlinearity, and the LNA.

109






6 ML-PWS: Quantifying Information
Transmission Using Neural Networks

Understanding the flow of information in natural and engineered systems is crucial
for their design and analysis. The mutual information rate is the fundamental mea-
sure to describe the transmission of information for systems with time-varying signals.
Yet, computing it accurately is extremely challenging due to the high-dimensional na-
ture of trajectories. Previous methods include the Gaussian approximation which is
limited to linear systems with Gaussian noise. A recent technique, Path Weight Sam-
pling (PWYS), in principle addresses these limitations, but it requires a stochastic model,
which is often not available for the systems of interest. We propose leveraging recent ad-
vances in machine learning to obtain such a stochastic model directly from data, and
provide a general-purpose tool for estimating the mutual information rate. Specifi-
cally, using unsupervised learning, we estimate the probability distribution of trajec-
tories by training a neural stochastic model on time-series data. We demonstrate that
by combining machine learning with PWS (ML-PWS) we can accurately compute the
information transmission rate of nonlinear systems, even in the absence of a known
mechanistic or phenomenological model. This approach represents a significant ad-
vance for data-driven quantification of information transmission in general nonlinear
and non-Gaussian systems.

This chapter is co-authored by Manuel Reinhardt, GaSper Tkacik (IST Austria), and Pieter Rein ten
Wolde.
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Information theory is the most general framework for studying signal processing
systems and quantifying their performance. Shannon [164] introduced the mutual
information as a measure to quantify how much information is communicated be-
tween two random variables, such as the input and output of a system at a given
time. However, for most systems the mapping from input to the output cannot be
directly described as a sequence of independent transmissions, rather information
can generally be contained in temporal correlations within the input or output sig-
nals. Therefore, the mutual information between signal values at a given instant is
in general ill-suited for measuring the amount of information transmission. To cor-
rectly quantify the information transmitted via time-varying signals requires com-
puting the mutual information between the entire input and output trajectories of
the system [194]. The rate at which this trajectory mutual information increases
with the trajectory duration in the long-time limit defines the mutual information
rate [164]. This rate represents the speed at which distinct messages are transmit-
ted through the system, and it depends not only on the accuracy of the input-output
mapping but also on the correlations within the input and output signals. In the
absence of feedback this rate also equals the multi-step transfer entropy [106, 160].

The mutual information rate is the key measure to quantify information flow in
dynamical systems. It is used to quantify biochemical signaling performance [107,
72,119], to perform model reduction [159], to detect the causality of interactions [ 56,
75] or to test for nonlinearities in time series [136]. This includes applications such
as financial markets, to assess dependencies between stock prices or market indices
over time [103, 41, 40], or neuroscience, where it is used to measure the amount of
information exchanged between different regions of the brain [148, 172]. Being one
of the key performance measures in information theory, the mutual information
rate is thus of paramount practical relevance.

Yet, computing the mutual information rate poses a significant challenge because
trajectories are high-dimensional objects, making its accurate estimation difficult.
Traditional techniques first estimate the joint probability distribution of input and
output, e.g. via histograms or kernel density estimates, and then compute the mu-
tual information from the distribution estimate [53, 118]. However, these distri-
bution estimates are typically infeasible in high-dimensional spaces [137, 25], and
have only been successfully used for computing the mutual information between
trajectories in very simple systems [112]. Non-parametric estimators, such as the
k-nearest-neighbor estimator [94] attempt to circumvent some of these issues but
require selecting an appropriate metric in trajectory space and still suffer from un-
controlled biases for high-dimensional data [58, 25]. For systems that exhibit ap-
proximately Gaussian dynamics, the mutual information can be estimated directly
from correlation functions [194, 195], though this method is limited to linear sys-
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tems.! Finally, analytical and numerical approaches have been developed to accu-
rately compute or approximate the trajectory mutual information from a dynamical
model of the system [194, 46, 152, 119, 169]. In particular, we recently introduced
Path Weight Sampling (PWS), a model-based Monte Carlo technique to exactly com-
pute the mutual information rate [152]. But, since all these techniques require an
accurate stochastic model describing the system, they cannot be directly applied to
data.

Neural network-based methods offer a promising alternative. By leveraging gra-
dient descent for learning complex high-dimensional distributions, we can poten-
tially estimate the mutual information more accurately. So far, most of these ap-
proaches have primarily focused on training neural networks to optimize varia-
tional bounds of the mutual information [7, 129, 2, 13, 132, 143], often with the goal
of learning effective latent state representations. However, these variational bounds
are frequently not tight due to limited amounts of training data and the difficulty
of optimizing over high-dimensional spaces [108, 143, 93, 25, 76], leading to sig-
nificant underestimation of the mutual information. The Difference-of-Entropies
(DoE) estimator by McAllester and Stratos [108] neither provides an upper nor a
lower bound on the mutual information, but often results in more accurate mu-
tual information estimates. As discussed in Section 6.3, this estimator shares some
similarities with PWS. Given the effectiveness of neural networks for modeling se-
quential data, we thus asked whether machine learning could be combined with
PWS to create a robust, data-driven estimator for the mutual information rate.

In this chapter, we present ML-PWS, an extension of PWS for computing the mu-
tual information rate directly from experimental time-series data. By leveraging
current machine learning methods, and combining them with PWS, we obtain a
flexible architecture for computing the mutual information rate. We demonstrate
that neural autoregressive sequence prediction models, which have been used in
speech synthesis [198] or text generation [178], can be trained to learn a nonlinear
stochastic model directly from data consisting of many input-output pairs of time-
series. The model is trained by minimizing the Kullback-Leibler divergence be-
tween the model predictions and the observed trajectories. With this approach, the
model learns the stochastic properties of the trajectories, enabling the computation
of the mutual information rate using PWS. Here, the neural network is both used
to generate stochastic trajectories, as well as to compute the path weights required
for the PWS Monte Carlo estimate. Moreover, we show that by leveraging varia-
tional techniques we can significantly improve the PWS estimator itself, employing
neural importance sampling [124] to efficiently marginalize the joint distribution of

1See also Chapter 5, where we extensively discuss the limitations of the Gaussian approximation for
nonlinear systems.
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input and output—a key step in the algorithm. We posit that these advances lead to
a generic, flexible, and efficient framework for computing the mutual information
rate directly from experimental data.

We test our approach by computing the mutual information rate for a minimal
nonlinear model and comparing our results against the true mutual information
as well as against the Gaussian approximation. We find that the autoregressive se-
quence model effectively learns the stochastic dynamics of the nonlinear system,
and that PWS yields accurate mutual information estimates, including in regimes
where the widely-used Gaussian approximation fails. Notably, we find that even
for approximately linear systems, our model combined with PWS provides more
accurate mutual information estimates than the Gaussian approximation because
it suffers less from bias caused by using a finite-size dataset.

6.1 Methods

6.1.1 The Mutual Information Rate for Discrete-time Processes

The mutual information between two random variables S and X is defined as

P(s, x)
I(S,X) = /fP(S xX)In ——— B(s) P(x) dsdx, (6.1)

or, equivalently, using Shannon entropies

1(S,X) = H(S) + H(X) — H(S, X)
= H(S) — H(S|X) (6.2)
= H(X) — H(X|S).

In the context of a noisy communication channel, S and X represent the messages
at the sending and receiving end, respectively. Then, I(S, X) is the amount of infor-
mation about S that is communicated when only X is received. If S can be perfectly
reconstructed from X, then I(S,X) = H(S). On the contrary, if S and X are in-
dependent, I(S,X) = 0. The mutual information thus is always non-negative and
quantifies the degree of statistical dependence between two random variables.

For systems that repeatedly transmit information, this concept must be extended
to sequences of messages S;., = (Sy,...,S,) and X;.,, = (X, ..., X};). The mutual
information between random sequences is defined analogously as

P(81. 1, X1:1)

W><> ¥

I(Sl:naxlzn) = <h’1
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where the expected value is taken with respect to the full joint probability of both
sequences. This quantity can be interpreted as the total information that is commu-
nicated via n transmissions S; — X;.

Note that, unless the individual messages are independent, the total amount of
information communicated is not equal to the sum of the mutual information be-
tween individual messages. Thus, in general

ISy Xa:n) # D101, X0). (6.4)
i=1

Intuitively, this makes sense. On one hand, auto-correlations within the input or
output sequences reduce the amount of information transmitted per message such
that the left term of the inequality may become smaller than the right term. On the
other hand, information can be encoded in temporal features of the sequences, such
that the left term could become larger than the right term. These observations show
that generally the instantaneous mutual information I(S;, X;) at any given time ¢
does not provide a meaningful measure of information flow, as has been pointed
out before [112, 49]. To correctly quantify the amount of information transmitted
per unit time we must take the whole sequence of messages over time into account.

For that reason, the relevant performance measure for an information processing
system is the mutual information rate. Let the input and output of an information
processing system be given by two discrete-time stochastic processes § = {S; | t =
1,2,..}and X = {X; | t = 1,2,...}. Then, the mutual information rate between 8
and X is

.1
R(8,X) = tllglo ?I(Slzt’Xlzt)- (6.5)

The mutual information rate quantifies the amount of information that can reliably
be transmitted per unit time.

The definitions above however do not provide an obvious way of how to compute
the mutual information rate in practice. Path Weight Sampling is a Monte Carlo es-
timator introduced recently for exactly computing the mutual information between
trajectories [152].

6.1.2 Path Weight Sampling

In the previous chapters, we developed Path Weight Sampling, which addresses
many of the shortcomings of previous techniques for computing the mutual infor-
mation. PWS is an exact technique that supports nonlinear systems and, in contrast
to the Gaussian approximation, correctly takes into account higher-order correla-
tions that may be present. Given a mechanistic model that describes the stochastic
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dynamics of a system, PWS makes it possible to directly compute the mutual infor-
mation rate for this model.

PWS is based on the exact evaluation of conditional path probabilities and re-
quires that we have a model of the system as well as its input statistics. Specifically,
it has three requirements. To compute the Monte Carlo estimate of the mutual in-
formation one needs to

1. sample from the input distribution P(s;.,),
2. sample from the conditional output distribution P(x;.,|s;.,), and

3. evaluate the conditional probability density P(x;.,|s1.,), i.e., the path weight.

We thus require a model of the system, that describes how the output x; evolves
stochastically for a given input sequence s, .,, as well as a model that describes the
stochastic input s;.,, ~ P(s;.,) to the system. Note, that we only need an estimate
of the probability density for the output P(x;.,|s;.,), but not for the input.

Given these models for input and output, the mutual information is computed
using a Monte Carlo estimate of Eq. (6.3)

1S, POcdalst: )
Lyc(S1:0:X1:0) = = ), In —————= 6.6

MC( 1:n l.n) N; P(xll;n) ( )
where (s}.,,, x}.,), ..., (sN,,, xN,) are pairs of input-output trajectories that need to
be drawn independently from the full joint distribution of trajectories, given by
P(S1:1s X1:n) = P(81:5) P(X1.]81.)- Such draws can be realized by first generating
an input sequence s;., ~ P(s;.,), and subsequently generating an output from the
conditional model x;.,, ~ P(xy.,|81:n).- As N — oo this estimate converges to the
true mutual information I(S;.,, X;.,), making PWS an exact Monte Carlo scheme.
Equation (6.6) requires evaluating the conditional probability density P(xy.,|S;.5)s
as well as the marginal probability density P(x; .,,) for a potentially large set of Monte
Carlo samples. How to evaluate these densities efficiently is the crux of PWS.

The first important observation is that we can typically directly evaluate the con-
ditional probability density of output sequences P(x;.,|s;.,,) from the stochastic
model of our system. For instance, suppose the output model is given by a Langevin
equation x = f(x,s,t) + c&(t) with delta-correlated unit white noise £(t). A dis-
cretized path x;., sampled from the model, can be represented by the initial state
x; and the sequence of random numbers €y, ...,€,_; ~ N(0, 1) that were used to
generate the path with a stochastic integration scheme. The conditional probability
density of the path can then be written as

1

exp (—€7/2) . 6.7)
2o

n-1
P(x1:nl81:0) = P(x1]s1) H
i=1
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A similar formula exists if the model is given by a master equation [25, 152], which
is based on the random numbers drawn in the Gillespie algorithm. There is also
a class of deep generative models with tractable probability distributions. More
generally, it is known that efficiently evaluating the conditional probability den-
sity P(x;.,]s1.,) of sequences is tractable for any autoregressive sequence model
without latent (unobserved) variables [57]. In this chapter we will exclusively deal
with tractable conditional distributions, allowing us to evaluate the numerator in
Eq. (6.6).

Unfortunately, the for denominator of Eq. (6.6), i.e., the marginal probability
P(x;.,), no simple formulae like Eq. (6.7) typically exist. Yet, P(x;.,) is required
for the Monte Carlo estimate of the mutual information. The only way of com-
puting P(x;.,) exactly from the conditional probability density P(x;.,|s;.,) is via
marginalization over the input paths:

P(x1.p) = /P(xlsnlslzn) P(s1.,)ds1.p - (6.8)

In practice, directly evaluating this integral is typically infeasible. A simple “brute
force” Monte Carlo estimate of Eq. (6.8) can be obtained by sampling s.,, ..., s¥,
from P(s;.,) and computing

M
1 .
P(x1:n) ® 37 20 P(Xwnlsiin) - (6.9)
i=1

For M — oo this estimate converges to P(x;.,). This direct Monte Carlo estimate
forms the basis of Direct PWS, the simplest variant of PWS, and can be sufficiently
accurate for short trajectories. However, due to the combinatorial explosion, the re-
quired amount of samples M to achieve an accurate result grows exponentially with
trajectory length, and thus for long trajectories the brute force estimate becomes in-
tractable. The problem is that for a given x;.,, most of the density P(x;.,|s;.,) will
typically be concentrated in a very small region of s, .,,-space. Therefore, for longer
trajectories more sophisticated Monte Carlo samplers must be used to achieve good
results. Two more powerful variants of PWS were introduced in Chapter 3.

While PWS is a powerful exact method to compute the mutual information be-
tween trajectories, it cannot be applied directly to experimental data. The need for
a stochastic model that provides an expression for P(x;.,|s;.,) represents the most
significant challenge for the use of PWS in practice. In many cases, a detailed mech-
anistic or phenomenological model of the experimental system is not available. To
overcome this problem, we learn a stochastic model from data which can then be
used in combination with PWS to compute the mutual information rate directly
from experimental time series data.
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6.1.3 Autoregressive neural networks for stochastic sequence
modeling

For computing the mutual information between trajectories using PWS, we require
a generative sequence model that specifies the stochastic dynamics of the input-
output mapping. We assume that the input distribution P(s;.,) is known and can
be sampled from. In experimental practice, we often have control over the input
that is delivered to the system. The challenge is thus in accurately modeling the
unknown stochastic dynamics of the system.

Hence, we require a model which, given an input sequence s;.,, = (81, ---» Sp)s
models the statistics of the stochastic output sequence x;., = (xy, ..., X,), i.e., we
want a generative model for the distribution P(xy,...,x, | $i,...,8,) = P(x1., |
S1:.n). However, for large n the space of multivariate distributions in x;., is vast,
and we need to make simplifying assumptions to be able to fit a stochastic model to
observed data. We develop a trainable machine learning model to obtain a genera-
tive sequence model from experimental data that meets the requirements for using
PWS.

We can factorize the joint probability of a sequence x;.,, as

n
P(x1:p | 81:0) = HP(xi | X1:6-181:0) 5 (6.10)

i=1

i.e., the stochastic dynamics are fully specified by the conditional stepping probabil-
ities. Note that in a physical system obeying causality, the output x; cannot depend
on future inputs. Thus, we can simplify Eq. (6.10) to

n
P(x1:p | 81:0) = HP(xi | X1:6-1581:0) - (6.11)
i=1

A common approach for modeling stochastic sequences is to assume Markov
statistics, meaning each element depends only on its immediate predecessor, sim-
plifying the conditional to P(x; | X;.;_1,81:;) = P(x; | xj_1,s;). In the case of a
stationary system, the transition probability P(x; | x;_;, s;) is the same for all i, such
that only one scalar distribution needs to be specified to define the Markovian pro-
cess. While this assumption significantly reduces the complexity of the distribution
space, Markov models are severely limited in that they cannot accurately model
sequences with long-range dependencies or feedback. Yet, these non-Markovian
features are often crucial to describe physical or biological processes.

Hence, we use a more general approach to directly learn Eq. (6.11) and parame-
terize the probability P(x; | x;.;_1,51:;) at each time i using neural networks. These
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models are called autoregressive models and have been used for modeling the prob-
ability distribution of sequential data in a large variety of contexts [178, 70, 11, 198].
To efficiently model a sequence, we need to make two main choices: (a) which para-
metric family of distributions to use for modeling each conditional probability, and
(b) which neural network architecture to use for obtaining the parameters for the
chosen family of distributions, at each time.

Gaussian autoregressive model

The choice of the parametric family of distributions depends on the nature of the
data. For example, for scalar continuous data, a Gaussian distribution might be
appropriate, whereas for discrete data, a categorical distribution is more suitable.
More complex data might require richer distributional families, such as autoregres-
sive flows or variational approaches, which allow for more flexible modeling of de-
pendencies between sequence elements. For this chapter, we assume that the ex-
perimental data is scalar and continuous and can be sufficiently well modeled by
Gaussian conditional distributions.

Hence, we consider an autoregressive model where each conditional distribution
P(x; | x;-i—1,81-;) is Gaussian. For i = 1,..., n, the model uses a neural network to
predict the mean u;(x;.;_1, $;.;) and standard deviation o;(x;.;_1, $;.;) of the current
sequence element x;, given the previous elements. Thus, conditional on the input
and its predecessors, the variable x; is normal distributed, with P(x;|xy.;_1,51:;) =
N (%1521, 81:1), 0i(X1:i-1, 51:1)). The functions y; : R~ - Rand o; : R —
R* are implemented as neural networks and trained from experimental data.

Importantly, while each conditional distribution is Gaussian, the whole sequence
is not Gaussian due to the nonlinear nature of the neural network. This means that
Gaussian autoregressive models are a generalization of regular multivariate Gaus-
sian models. In fact, a Gaussian autoregressive model can learn arbitrarily com-
plex nonlinear relationships between the individual elements of a sequence, where
the complexity is only limited by the neural network architecture. In contrast, a
Gaussian model can only describe linear correlations between different sequence
elements. Various neural network architectures can be used to implement the non-
linear functions y; and o;, and the choice must be made depending on the amount
of training data, the complexity of the input-output mapping, as well as computa-
tional constraints.

Network architecture

The network architecture is crucial because it directly determines the number of
neural network parameters (or weights) that need to be learned. This, in turn, af-
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Figure 6.1: Two possible network architectures for autoregressive sequence models.
In both cases, the next output x; is sampled from a Gaussian distribution
with parameters (u;, o;) which the neural network computes from the
history so:, Xo:i-1-

i+1 2 i3 4

fects both the flexibility of the model and the computational efficiency of training
and inference. A more flexible architecture, with a larger number of weights, can
potentially capture more complex relationships in the data but comes with the trade-
off of increased computational cost and the risk of overfitting.

In principle, for modeling a sequence of length n, learning an autoregressive se-
quence model would require training n separate neural networks, one for each con-
ditional distribution P(x; | xy.;_1, S1.,), Withi = 1, ..., n. In practice, shared weights
can drastically reduce the number of parameters to be learned. If the sequence is
stationary or has other types of periodic features, the neural networks correspond-
ing to different time steps can often share a majority, if not all, of their weights. This
drastically simplifies training and evaluation of the autoregressive model.

We discuss two neural network architectures (schematically in Fig. 6.1) that are
widely used for stochastic sequence prediction and make use of weight-sharing to
reduce computational costs: recurrent neural networks (RNNs) and autoregressive
convolutional neural networks (CNNs). Other sequence models like transformer
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models [202, 39] could similarly be used but are not presented here.

Recurrent neural networks Recurrent Neural Networks (RNNs) process sequen-
tial data while maintaining a hidden state that evolves over time. At each time step,
an RNN takes the current input and the previous hidden state to produce an out-
put and update the hidden state. This mechanism allows the network to store rele-
vant information about past inputs in the hidden state, effectively creating a form of
memory. This makes the use of RNNs attractive for generic autoregressive sequence
prediction models.

Given the sequences s;., and x;., the RNN takes an initial state h, € R¢ and
generates a sequence h;., = (hy, ..., h,) from a recursive relation

hi = fo(si, Xi—1,hi—1) (6.12)

where h; € RY for i € {1,...,n} and an activation function fy. The activation
function fg could for instance be parameterized by a simple neural network layer

fo(s,x,h) = tanh(Us + Vx + Wh + b) (6.13)

with parameters 8 = (U € R,V € R, W € R¥*4, h € R?) and applying tanh
elementwise. Other possible choices for fg include LSTM units [80] or GRU units
[28] which often allow the model to better learn long-term dependencies.

From the RNN we can obtain a stochastic representation of the output sequence
X1.,. We extend the recursive relation above by adding a sampling step to obtain x;
from h;

xi | hy ~ N(u(hy), o(hy)) (6.14)

such that each x; is a normal-distributed random variable whose mean u(h;) and
standard deviation o(h;) are computed from the current hidden state h;. In practice
we use the following form for ¢ and o

u(h) = Wh + b, (6.15)
a(h) = exp(W;h + b,) (6.16)

where the weights W, and W, are d-dimensional row vectors and the exponential
function ensures that the standard deviation is always positive. We denote the com-
bination of all neural network parameters by € = (6, W, b,,,u, W, by).

The recursive relations (6.12) and (6.14) fully define the conditional probability
distribution P(x;.,|s;.,, ©) of the output sequence given the input sequence. Since
h; depends on s; and x;_;, as well as h;_,, it encodes information about the entire
past s;.; and x;.;_;. Therefore, the model can incorporate long-range information
for predicting the next output.

121



6 ML-PWS: Quantifying Information Transmission Using Neural Networks

Convolutional neural networks Autoregressive convolutional networks model
sequential data using masked 1D-convolutions. The masking ensures that the pre-
diction at each time step only depends on the current and preceding elements of
the sequence, maintaining causality. Unlike RNNs, which process sequences one
time step at a time, CNNs can efficiently compute representations of the entire se-
quence in parallel, leading to substantial improvements in computational speed.
This parallelism is particularly advantageous when working with long sequences.
The architecture we describe here is inspired by MADE [138], as well as Pixel CNN
[198].

The autoregressive CNN processes the data by applying a series of masked con-
volutional layers. At time step i, the CNN predicts the Gaussian parameters u;, o;
which describe the conditional P(x; | s;.;,%;.—1)- The mask is applied to each
convolutional layer and restricts connections to only inputs in the past, or previ-
ously predicted outputs, i.e., non-causal connections are masked out by setting their
weights to zero. The output of the first convolutional layer at time step i depends on
the local receptive field (S;_j41:i, Xj_k:i—1) of the input and output sequences, where
k is the kernel size, i.e.,

hi = fo(Sizk+1:is Xick:i=1) (6.17)

where fg represents the 1D convolutional operation with learnable parameters 6.
The operation fg is composed of a set of learned convolutional filters and a non-
linear activation function such as ReLU. Unlike for a RNN #; is not computed via
a recursive relation since h; does not depend on h;_;. Thus, we need a different
mechanism to capture long-range dependencies.

Typically we apply multiple convolutional layers in series. This enables the model
to capture long-range dependencies beyond the kernel size k in the input sequence,
as the depth of the network increases the temporal span of the receptive field. More-
over, stacking convolutional layers with non-linear activation functions allows the
model to learn more complex representations of the data, potentially improving the
accuracy of the model.

To generate the output sequence Xx; . ,,, we add a sampling step similar to the RNN
case. Specifically, the output x; at each time step is sampled from a distribution
parameterized by the corresponding output from the CNN h;:

xi | hy ~ N(u(hy), o(hy)) (6.18)

The resulting conditional probability distribution pg(x;.,|s;.,) is fully defined by
the convolution weights @ and the sampling step.
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Evaluating and training the network

The autoregressive neural network described above can be viewed as generative
models that approximate the conditional distribution P(x;.,|s;.,), i.e., we can use
them to draw independent samples from pg(x;.,|51:1n) & P(X1.,81.,) Where 6 rep-
resents the network weights. Generating x;., given s;., is done sequentially. For
i =1,...,n, the sampling procedure alternates between computing the parameters
of the conditional distribution, &; = u;(x;.;-1,51:1), §; = 7;(x1.i—1,51:;), and sam-
pling the next x; ~ N(&;, 6;).
The conditional probability of the resulting output sequence is given by

n
Po(X1:nlS1:0) = H P(x;[x1:¢-1,51:¢,6)

i=1
n Y
1 C—
=[] =—-ex (——(xl Aéh) ) :
i=1 \ 276; 26;

This probability can be evaluated on the fly while generating the sequence. More-
over, for a given pair of input and output sequences, we can also use the model to
directly evaluate pg(x;.,|S;.,) Which is required for PWS. Note that in practice, to
numerically accurately compute a product with many terms it is typically necessary
to perform the computation in log space.

Note that while generating a sequence is inherently a sequential process, the path
likelihood pg(x;.,]S1.,) can be evaluated in parallel in some neural architectures
like the CNN. Specifically, for a given pair of sequences (s;.,, X1:,), the conditional
probability in Eq. (6.19) is parallelizable, since the computations for &; and &; for
i = 1,...,n are independent of each other. This allows for efficient training on
parallel computing hardware.

To train the model, we minimize the negative log likelihood of its predictions
when evaluated on the training data. Specifically, we assume that the training data
consists of N pairs of sequences (s¥.,,, x¥.,,) for k = 1, ..., N. The loss function to be
minimized is then given by the sum of the individual negative log likelihoods for
the trajectory pairs:

(6.19)

N
£(6) =- Z In pg(X1:pl81:0) - (6.20)
k=1

This training objective is equivalent to minimizing an empirical estimate of the
Kullback-Leibler (KL) divergence between the distribution of the training data and
the distribution defined by the model, thus training the model to fit the underlying
data distribution [17].
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There are a few practical considerations for efficiently training the model. Train-
ing is performed in iterations and it is often beneficial to introduce stochasticity
between iterations to speed up gradient descent and regularize the loss function to
prevent overfitting [21, 51]. For this reason, as typically done for training neural
networks, the loss function in Eq. (6.20) is only computed for a subset of the train-
ing data, in mini-batches of size M, instead of the whole training set of size N. At
the beginning of each iteration, the data subset that is used is randomly selected
(without replacement) from the whole data set.

6.1.4 Efficient Marginalization Using Variational Inference

In the preceding section, we have shown how machine learning techniques can be
leveraged to obtain a Path Weight Sampling (PWS) estimate of the mutual informa-
tion rate directly from empirical data. By employing machine learning algorithms to
learn the underlying stochastic model of the data, we enable accurate computation
of the mutual information rate using the PWS framework.

In this section, we employ machine learning differently, to optimize the PWS
method itself. Specifically, we address the computationally most demanding task:
the evaluation of the marginalization integral. While we have presented alternative
techniques for computing this integral in Chapters 2 and 3, here we leverage recent
advances in machine learning and introduce an efficient marginalization strategy
based on variational inference.

The idea of the variational marginalization procedure is to train a second neu-
ral network, the inference model, that parameterizes an importance sampling dis-
tribution over s;., to enable the efficient computation of the marginal probability
P(x;.,)- This inference model, often referred to as the backward model, operates in
reverse directionality to the actual system, i.e., it generates an input given an output.
This is in contrast to the previous section, which focused on generative models for
the output x;., given the input sequence, governed by P(x;.,|s;.,). Roughly, the
inference network takes an output trajectory x;., and generates input trajectories
s1.,, that could have likely produced the corresponding output. When this network
is used as an importance sampler, we can significantly accelerate the computation
of the marginal probability and thus the mutual information. We denote the infer-
ence model’s generative distribution as q(sy.,|X;.5)-

To compute the marginal probability with help of the inference model, we write
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P(x,.,) as the expectation with respect to a probability density q(s;.,|x;.,), i-e.,

P(xlzn)=/P(x1:n|51:n)P(Slzn)dslzn

= [EP(Sl;n) [P(x1:nl81:n)]

P(X1.pl81:1) ]
—g(S1- 4| X7
Q(S1;n|X1;n)q( l.l’l| l.n)

P(Slzn) P(xlznlslzn)]
q(slznlxlzn)

(6.21)
= [EP(SI:n) [

= [EQ(sl:n|x1:n) [

where q(s;.,|x;.,) can be chosen arbitrarily in principle. Equation (6.21) is esti-
mated using Monte Carlo sampling, by using the inference network to generate a
set of trajectories {s.,, ..., s}, } from q(s;.,|x;.,) and computing the respective im-
portance weights w, ..., wy, according to wy, = w(s¥.,,, x;.,) where

P(Slzn) P(xlzn|51:n)

W(Sy. 1y X7-9) = (6.22)
( L l.n) Cl(‘s‘lznlxl:n)
The marginal probability is then estimated by
LM
P(x;.,) ~ — Z Wy . (6.23)
M k=1

In this process, q(s;.,|Xx1:,) serves as the importance sampling distribution. Re-
gardless of the choice of q(s;.,|X;.,), this estimate always converges to P(x;.,) in
the limit M — oco. However, crucially, for finite M the choice of q(s;.,|X;.,) deter-
mines the variance and thus efficiency of the estimate.

If, as done in Direct PWS (Chapter 2), we choose the “prior” probability P(s;.,) as
the importance sampling distribution, the resulting estimate is typically highly in-
efficient. This is because with that choice the importance weights are usually very
unevenly distributed, with heavy tails which significantly increases the variance
of the estimator, see also Chapter 3. It is well-known that the prior is generally a
poor importance sampling distribution since it often allocates significant probabil-
ity mass to regions of the configuration space that contribute little to the likelihood
[14, 63]. The hypothetical optimal choice for the importance sampling distribu-
tion q(s;.,|x1.5,) is the true “posterior” distribution P(s;.,|X;.,), as this makes the
importance weights constant, resulting in a theoretically zero variance estimator.
However, since the true posterior is typically intractable, we instead aim to approx-
imate the posterior by a tractable distribution, to reduce the variance as much as
possible.
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The idea of variational inference is to train the inference model using a loss func-
tion that minimizes the Kullback-Leibler (KL-)divergence between the variational
distribution q(s;.,|X;.,) and P(s;.,|x;.,). Since the KL-divergence is always non-
negative, and is only exactly zero if q(sy.,|X;.,) = P(81.,|%;1.5), this criterion op-
timizes the importance sampling distribution. The idea of using an inference net-
work to approximate the posterior was popularized with the introduction of the
variational autoencoder (VAE) by Kingma and Welling [88], a powerful technique
for approximating complex distributions. The training objective used in variational
inference is the Evidence Lower Bound Objective (ELBO) which provides a lower
bound on the “evidence” P(x;.,). Maximizing this bound brings the variational
approximation closer to the true posterior. The ELBO can be derived by applying
Jensen’s inequality to the last line of Eq. (6.21):

In P(s1:1) P(X1:0081: 1)

InP(x;.,) > [Eq(31:n|x1:n) q(s1-nl*1:0)

= LELBO (6-24)

It is easy to show that maximizing the ELBO is equivalent to minimizing the KL-
divergence between the variational distribution and the true posterior. Although
the estimate in Eq. (6.23) is always unbiased, i.e., it converges to the marginal prob-
ability P(x;.,) as M — oo regardless of the choice of q(s;.,|X; ), in practice, conver-
gence will be slow unless the inference network accurately approximates the pos-
terior. Thus, optimizing the inference network by maximizing the ELBO is crucial
for efficient marginalization.

To closely approximate the posterior, the inference network needs enough flex-
ibility to capture the key features of the true posterior. Efficient marginalization
in trajectory space, in particular, requires an inference network capable of model-
ing high-dimensional distributions with complex dependencies between variables.
Specifically, for efficiently marginalizing in trajectory space, we require an infer-
ence network that can model high-dimensional distributions with complex depen-
dencies between variables. However, selecting an appropriate inference network
can be challenging: if the network lacks sufficient flexibility, it may oversimplify
the posterior, which may be hard to diagnose. Various approaches for designing
flexible inference networks have been studied previously and could be applied here
[153, 42, 89, 197, 87, 92, 139].

In our example, we use an inference model for marginalization that closely re-
sembles the generative model discussed in the previous section and uses an autore-
gressive sequence model for q(s;.,|x;.,). The inference network consists of a RNN-
based encoder-decoder architecture [179] which helps in approximating the poste-
rior P(sy.,|X;.,) by effectively using the information in x; ., to guide the generation
of s1.,.
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The encoder, a RNN, first processes the sequence X; ., in reverse to create a latent
representation h; .,, which provides contextual information to the decoder. This la-
tent sequence is used by the decoder to generate a new sequence §;.,, ~ q(81.,1%1:1)
that is compatible with x;.,,. Because the encoder processes Xx; ., in reverse, the la-
tent sequence h, ., enables the decoder to incorporate information about all future
values x; for j > i into each ;. Importantly, by including future information from
X;.n to sample §;, we can effectively capture the dependence structure of the true
posterior P(3;.,|X;.,) into our variational approximation. Thus, using an encoder
is a key ingredient for accurately approximating the posterior.

The decoder then autoregressively generates the sequence §;.,, ~ q(81.,1%1:0)
using the context sequence h;, ., provided by the encoder. Thus, each §; is generated
conditioned on both h; and the previously generated §;_;. As in the forward model,
§; is generated probabilistically; however, rather than a Gaussian distribution, the
decoder uses a mixture of logistic distributions, inspired by the Flow++ architecture
[78]. This encoder-decoder setup provides a flexible, expressive model capable of
accurately approximating the posterior distribution.

Given that all parameters in our model are continuous, we optimize the weights
of the inference network using stochastic gradient variational Bayes (SGVB) [88], a
widely used method for training variational models. SGVB leverages the reparam-
eterization trick to estimate the gradient of the ELBO, which makes the training
procedure efficient.

6.2 Application to a Minimal Nonlinear Model

We evaluate our approach using synthetic training data to train a generative model
and then using PWS to compute the mutual information rate.

6.2.1 Nonlinear Model

To generate training data for the neural network, we combine a linear auto-regressive
input, with a stochastic nonlinear output model. Specifically, we considered an in-
put that evolves according to AR(1) statistics:

Se=¢Si1+& (6.25)

where £; are iid random variables from a unit Gaussian distribution, and ¢ € [0, 1)
is a parameter. In steady state, the autocovariance of this process is given by

¢|t|

5 (6.26)

<SrSr+t> =
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Figure 6.2: Example time series from the training set. The training set was gener-
ated using parameters ¢ = 0.5,0 = 0.2, and & = 0.2. In the upper left
panel one stochastic realization of the input process is shown. The other
panels show the mean output as well as 10/90-th percentiles for the out-
put at different values of the input gain y. The effect of the gain on the
output can be clearly seen. For the highest gain y = 10.0, we observe
saturation of the output.

The output X; is governed by the equation
X; =0(yS) + pXi—y + 9, (6.27)

where 7, are iid Gaussian random numbers, ¥, p and 9 are positive real parameters,

and
1

1+e>
is the logistic function. The gain y effectively controls the strength of the nonlinear-
ity; see Fig. 6.2. This process models a response that saturates as the input grows.
In fact, o(x) is equivalent to the Hill function commonly used in biochemistry to
describe saturating enzyme kinetics [47].

o(x) = (6.28)

6.2.2 Training the Neural Networks

We trained our machine learning model with synthetic data generated according
to Eq. (6.27) for various values of the gain, denoted by y. For each value of y, we
created a distinct training set of 1000 pairs of time series (s;.59, X;1:50) and trained
one autoregressive model per training set. Once the models were trained, we esti-
mated the mutual information for each of them using PWS, employing variational
inference to perform the marginalization.
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For the generative model, we use a recurrent neural network (RNN). Using Gated
Recurrent Unit (GRU) cells [28] with a hidden size of 64 for temporal processing,
along with a dense layer that outputs two values, representing the mean u and log-
variance In o2 of a Gaussian distribution. For each time step i, the model receives
input signals s; and x;_; and predicts the next output value x; by sampling from this
Gaussian. The model is trained by iteratively optimizing over 100 epochs over the
entire training set. The training set is split into mini-batches of size 64 which are
shuffled after each epoch. We optimize the model using the Adam optimizer [86]
(b; = 0.9, b, = 0.999) with weight decay regularization [99] of 1 x 10~% and using a
cosine decay learning rate schedule [98] that smoothly decreases the learning rate
from 1 x 1072 to 1 x 1073 throughout the training process.

The inference model used for marginalization is also modeled as a RNN. This
model consists of an encoder-decoder architecture for approximating the posterior
P(s;1.n]%1:,)- The encoder first processes the input sequence Xx; ., in reverse using a
GRU cell with 64 hidden units to create a latent sequence h;.,,. The decoder then
uses another RNN with a hidden size of 64 (using a GRU cell), to autoregressively
generate a sequence §; ., using the context sequence h, .,,. The sequence 3; ., is gen-
erated probabilistically by sampling from a mixture of logistic distributions with five
components. The inference network is trained for 100 epochs with mini-batches of
size 64. For each Xx;., in the training set, 16 Monte Carlo draws from the inference
network 8., ~ q(8;.,|x1.,) are used to estimate the ELBO loss in Eq. (6.24). The
loss function gradient is estimated using SGVB [88]. The model is optimized using
the ADAM optimizer with weight decay regularization (same parameters as above).
We use an initial learning rate of 5 x 1073 that decays exponentially by a factor of
0.5 as training progresses.

To compute the marginal probability P(x;.,) from our models, we use the infer-
ence network to generate 2!4 = 16 384 samples 3 .,, for each sequence x;.,. From
these samples §; ., the marginal probability is estimated using Eq. (6.23). We moni-
tor the convergence of the variational marginalization procedure by computing the
effective sample size from the importance weights [105]. In our case, the effective
sample size always remained above 85% of the actual sample size, indicating that
the inference network approximates the posterior well.

6.2.3 Comparison Against the True Mutual Information

The green dots in Fig. 6.3 display the ML-PWS estimate of the mutual information
I(S;.50,X7:50) as a function of the gain y, see Eq. (6.27). As expected, for small y,
the mutual information grows with y as the gain enhances the signal-to-noise ratio.
For larger values of y, we observe a saturation and even a decline in the information
rate due to the saturation effect of the logistic function. This behavior is indicative
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Figure 6.3: Mutual information estimates for the nonlinear 1D time-series model
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across a range of input gain values (see Eq. (6.27)). The green dots rep-
resent the ML-PWS estimates (using an autoregressive RNN model for
learning the stochastic dynamics), while the solid green line indicates
the ground truth mutual information calculated by applying PWS di-
rectly to the nonlinear model. For comparison, the Gaussian approxima-
tion has been obtained in two diferent ways: the dotted orange line (la-
beled Gaussian I) represents Gaussian information estimates obtained
from the same dataset (N = 1000) that was used to train the machine
learning model, showing finite sample size effects. The dashed orange
line (labeled Gaussian IT) represents a “reduced-bias” Gaussian approx-
imation using an extended dataset (N = 100 000). For low gain (y < 10),
both Gaussian approximations align closely with the ground truth and
ML-PWS. At high gain, however, the Gaussian approximation fails to
capture nonlinear effects, and only provides a lower bound on the mu-
tual information. Yet, ML-PWS does not suffer from this problem and
correctly estimates the mutual information for the whole range of y.



6.2 Application to a Minimal Nonlinear Model

of the nonlinearity of the system.

Next, we compared the mutual information estimates against various benchmarks.
First, we compute the true mutual information of the nonlinear system using PWS
directly with the model given in Eq. (6.27). Since this model represents the true un-
derlying dynamics of the training data, we consider this result as the “ground truth”
mutual information.

Figure 6.3 (solid green line) shows the ground truth mutual information. We can
see that the machine learning approach matches the ground truth very well across
all values of y. This demonstrates that the autoregressive neural network can accu-
rately learn the stochastic dynamics of the nonlinear model and reliably estimate
the path likelihood, which is required for the Monte Carlo estimate of mutual in-
formation. These results confirm that combining PWS with machine learning is
a feasible and promising approach for computing the mutual information rate in
complex nonlinear systems.

6.2.4 Comparison Against the Gaussian Approximation

Second, we use the Gaussian approximation as a benchmark, which is widely used
for directly estimating mutual information rates from time-series data. We obtain
the Gaussian estimate by computing the 2n X 2n covariance matrix

z z
Y= o5 s ) (6.29)
< sz Z:xx

from our dataset of trajectories s,.,, X;.,. The individual blocks of ¥ are n X n ma-
trices defined by ZZB = (;j). The Gaussian approximation for the mutual infor-
mation (in nats) is given by

[Zssl |

) (6.30)

I(S1:p, X1:0) = % In
See Appendix A for more details.

To make a fair comparison of our machine learning method with the Gaussian
approximation, we use the same dataset for obtaining the Gaussian approximation
that was used for training the ML model. We refer to this benchmark as “Gaussian I”
and it corresponds to the dotted orange line in Fig. 6.3. The Gaussian approximation
suffers from two sources of systematic bias: a finite sample size bias due to imperfect
correlation function estimates from 1000 trajectory pairs, and a bias arising from the
assumption of linearity which does not hold at large y. Our aim was to distinguish
these two sources of bias.

We created another benchmark, called “Gaussian I1” (dashed orange line in Fig. 6.3)
to be able to quantify the bias introduced by the small sample size of the “Gaussian I”
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benchmark. Gaussian II is similar to Gaussian I but is obtained from a significantly
larger dataset of 100 000 trajectory pairs (s;.59, X1 :50), generated from the nonlinear
model. This larger dataset allows for very precise estimates of the (cross-)covariance
matrices required for the Gaussian approximation, effectively eliminating the sam-
ple size bias. However, it should be noted that this benchmark is “unfair” since it
uses a much larger dataset than the one that was used to train the autoregressive
ML model.

In Fig. 6.3 we compare the results obtained using PWS against the two variants of
the Gaussian approximation, and we observe that for y < 10 the Gaussian approx-
imations (the regular one, Gaussian I, and the one with reduced bias, Gaussian II)
closely match the ground truth while significantly deviations appear at larger gain.
Indeed, in the low-gain regime, the nonlinearity of the system does not significantly
impact the output, the Gaussian approximation provides a reliable estimate of the
information. In the high-gain regime, the Gaussian approximation fails to correctly
capture the nonlinear dynamics of the system, and only yields a lower bound for
the mutual information, as expected from information theory [115].

Figure 6.3 also clearly displays the effect of finite sample size on the accuracy
of the Gaussian approximation. Specifically, the Gaussian approximation obtained
from the smaller training dataset (Gaussian I, displayed as dotted orange line in
Fig. 6.3) consistently overestimates the mutual information as computed with the
Gaussian approximation from the larger dataset (Gaussian II, dashed orange line
in Fig. 6.3). This means that at low gain, even though the system is approximately
linear, the Gaussian approximation obtained from the training set slightly overes-
timates the true mutual information. This over-estimation is purely an artifact of
finite sample size bias, and is not present in the “reduced-bias” Gaussian approxi-
mation. Strikingly thus, our new method based on machine learning yields a better
estimate for the mutual information using the training set, even at low gain, where
the Gaussian approximation is expected to hold.

6.3 Discussion

By combining neural networks with PWS, we introduced ML-PWS, a new scheme to
estimate the mutual information between input and output trajectories of a system.
PWS is a Monte Carlo method for calculating mutual information between trajecto-
ries, relying on a stochastic model that defines the probability distribution of trajec-
tories to determine the path action. We demonstrated how autoregressive sequence
prediction models can be trained on time-series data to learn this stochastic model,
making it possible to use PWS with such models to compute mutual information.
By applying ML-PWS to a nonlinear model of information processing, we showed
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that it provides more accurate mutual information estimates than the Gaussian ap-
proximation. While this example serves as a proof of concept, it shows the potential
of advanced machine learning techniques to automatically derive stochastic models
from experimental data, and to make it possible to compute information-theoretic
measures for complex, high-dimensional data.

Using the mutual information rate as a measure for time series correlation pos-
sesses a distinct advantage compared to other, simpler, measures: it remains in-
variant under deterministic and lossless transformations of the sequences [30]. Not
only is this property desirable on philosophical grounds, but it can also simplify
the training of machine learning models. Specifically, in some cases, it could be
beneficial to preprocess the time series data by transforming it into a different rep-
resentation (e.g. a symbolic encoding) that is more conducive to machine learning
analysis [97]. Such a transformation could be applied before employing ML-PWS
to compute the mutual information rate. Additionally, this concept could be used
for model reduction, making it possible to answer the question of whether a time
series with a simplified representation still maintains the same mutual information
rate.

As our results in Fig. 6.3 demonstrate, ML-PWS with Gaussian autoregressive
models is significantly more general than the Gaussian framework [194]. The range
of stochastic processes representable by neural autoregressive models is much larger
than the range of processes which can be described by a Gaussian model. Even
though in the autoregressive model the distribution of each x; conditional on x;.;_;
and s; .; is Gaussian, the distribution of the whole sequence P(x;.,|s;.,) is generally
not Gaussian due to the nonlinearity of the neural network. In fact, a Gaussian au-
toregressive model can be seen as a (time-discretized) representation of a nonlinear
stochastic differential equation of the form

dx; = f(s1.¢>X1:4—1) dt + &(81.¢, X1:4-1) AW, (6.31)

where f(sy., X1.,—1) and g(sy.4, X;.;—1) are the potentially nonlinear drift and diffu-
sion terms that are learned by the neural network. This representation is a general-
ization of the Gaussian framework, which assumes f and g to be linear operators.

Nonetheless, assuming that each x; is normally distributed given its and the sig-
nal’s history, does restrict the expressive power of the model. For instance, such
a model can never represent multimodal predictive distributions or discrete state
spaces. In these cases, other predictive distributions must be chosen.

ML-PWS shares some characteristics with the Difference-of-Entropies (DoE) es-
timator for the mutual information proposed by McAllester and Stratos [108]. Let S
and X be (high-dimensional) random variables and I(S, X) = H(X)—H(X|S) the de-
sired mutual information computed as a difference of entropies. In both ML-PWS
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and the DoE method, the generative model for the conditional probability P(x|s)
is trained by maximizing the likelihood, an objective that, as shown in Ref. [108],
results in an upper bound of the conditional entropy H(X|S). However, unlike ML-
PWS, McAllester and Stratos [108] use a second generative model that represents
the marginal probability P(x), yielding an upper bound of the marginal entropy
H(X). PWS instead computes the marginal probability P(x) by marginalizing the
joint probability P(s,x) = P(s) P(x|s). In this way, P(x) can in principle be com-
puted for any desired accuracy. This direct marginalization in ML-PWS also enables
efficient computation of the mutual information I(S’, X") between a input signal S’
with different statistics and the corresponding output X', without needing to re-
train the marginal model. This is particularly useful if one is interested in the chan-
nel capacity, as determined by the input distribution that maximizes the mutual
information or information rate for the system of interest. Indeed, in systems with-
out feedback, P(x|s) is a property of the system and does not change upon changing
the input. The generative model then remains the same, such that ML-PWS can di-
rectly recompute the mutual information for different input statistics. Determining
which of these approaches is preferable for estimating mutual information remains
an open question for future research.

Alongside ML-PWS, we introduced a new marginalization scheme for PWS, lever-
aging techniques from variational inference. In PWS, marginalization is used to
compute the marginal probability of a trajectory, P(x;.,). Our approach trains an
inference network to generate input trajectories s, ., approximately distributed ac-
cording to the posterior distribution P(s;.,|x;.,), enabling efficient calculation of
P(x;.,) through importance sampling. Importantly, this marginalization technique
is general and can be applied to any generative model, regardless of whether it
is based on neural networks. This flexibility makes it a powerful marginalization
scheme for any application of PWS to a system with continuous state space. Fur-
thermore, since marginalization is mathematically equivalent to a free-energy com-
putation (see Chapter 3), our approach demonstrates that variational techniques
can yield efficient methods for free-energy estimation.

In conclusion, ML-PWS—our integration of neural networks and variational in-
ference into the PWS framework—represents a promising advance for estimating
the mutual information of high-dimensional data, a notoriously difficult problem.
While our initial tests on a toy example demonstrate the technique’s potential, fur-
ther evaluation on more complex systems is needed. Additionally, comparing ML-
PWS with other neural methods for mutual information estimation will help clarify
its advantages and limitations. By enabling the accurate computation of the mu-
tual information rate, we anticipate that ML-PWS could contribute to a deeper un-
derstanding of complex dynamical systems, with potential applications spanning
neuroscience, biology, physics, and machine learning.
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A Notes on the Computation of the Gaussian
Approximation

Mathematically, computing the mutual information between trajectories in the Gaus-
sian framework is relatively simple. From Shannon’s formula for the entropy of a
multivariate Gaussian distribution it follows that the MI is given by

I(5,X) = %ln (%) [nats]. (A1)

See Tostevin and ten Wolde [194, 195] for details. This is a straightforward formula
involving the logarithm of determinants of symmetric matrices.

However, computationally evaluating this formula correctly and efficiently re-
quires some thought. The matrices X, and X, have dimensions N X N, and the
matrix Z has dimensions 2N X 2N where N is the trajectory length. Thus, for long
trajectories, the involved matrices can become very large. Computing the determi-
nant of a large matrix is computationally non-trivial and possibly numerically un-
stable. Note that the generic algorithm to compute the determinant of a matrix of
dimensions N x N scales with order N3. Thus, doubling the size of the matrix makes
the computation of the determinant take approximately 8 times as long. Moreover,
the determinant of a large matrix may be very close to zero or very close to infinity.
Representing such numbers in the computer using floating point representations
can lead to significant numerical accuracy issues. In practice this further limits the
maximal size of covariance matrices that one can use.

Fortunately, we can leverage the special structure of the Gaussian covariance ma-
trices to simplify the computation of determinants significantly. Generally, all in-
volved matrices are symmetric and positive definite. Using a clever trick we can
speed up the computation of the determinant of a symmetric matrix. But even then,
we still have a scaling of n® with matrix size. Using one additional assumption we
can do much better. If the system under consideration is in steady state, the matri-
ces have Toeplitz structure. We will see that this structure allows us to construct a
nlogn scaling algorithm that approximates the determinant very well for large n.
Lastly, to deal with numerical accuracy issues, we will discuss how to compute the
log-determinant of a matrix directly. This will be dramatically more accurate than
first computing the determinant and then taking the logarithm.
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Structure of Covariance Matrices in the Gaussian Framework

We consider a Gaussian system with stochastic input s and output x. Both, input
and output, are vectors representing trajectories s(t) and x(t) sampled at discrete
times ¢y, ..., t4_;. Hence, d € N is the dimensionality of the vector space of s and x.
The joint probability density of s and x is given by

1 1
P(S,X) = Wexp |:—§( s X )Z_1< ; )] (AZ)

which is the PDF of a 2d-dimensional multivariate Gaussian distribution. Z is a
2d X 2d matrix with block form

Z Y
Z= 558 ) . (A.3)
< z“xs z“xx

The individual block entries of Z correspond to the (cross-)covariance matrices of
input and output. Specifically, 4 is a d X d matrix with entries

ss = (a(tpB(Ly)). (A4)

We can make a few observations concerning the form of these matrices. It fol-
lows immediately from the definition that both Xy and X, are positive definite,
symmetric matrices. Xg, and X, are generally not symmetric, but they are trans-
poses of each other, i.e., 2L, = Z,. It follows from these two observations that Z
itself is symmetric. Furthermore, we usually deal with systems in steady state, in
which case the matrices have even more structure. When a system is in steady state,
the correlation functions are (time-)translation invariant. That means that the cor-
relation of observations at ¢; and ¢; only depends on the difference ¢;—t;, i.e., we can
find functions Cqp(t) such that Cog(t; —t;) = (a(t;)B(¢;)). It follows that the matrix

element X/ ap only depends on the difference j —i. We can thus write the matrix ele-

ments as X7 ap = c B ' where c wp = «3(t; — to) are the components of a vector ¢ that
fully specifies the matrix. A matrix with this structure is called Toeplitz matrix. We
can use this structure to simplify the computation of determinants significantly, as
described below. But before we explain how to compute determinants efficiently,
we discuss one further issue regarding the matrix Z itself.

Note that unlike the matrices Z,3, Z itself does not have Toeplitz structure in
general. This means the method described below is not directly applicable for the
computation of |Z|. Yet, it seems we need to find |Z| for computing the MI using
Eq. (A.1). It turns out that this is not necessary. One can make use of the fact that
Z is composed of Toeplitz blocks to avoid computing its determinant. At the end of
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the following section we show how to adapt the formula described in Ref. [123] for
computing the mutual information rate to derive an efficient approximation of it in
terms of the discrete Fourier transform.

Efficient Evaluation of Determinants

For a symmetric positive definite matrix = € R9*? the determinant can be com-
puted faster than for a general matrix. We exploit the fact that such a matrix can
always be decomposed as

> =LLT (A.5)

where L € R4 is a lower triangular matrix with positive diagonal entries. This
factorization is called Cholesky decomposition and there are efficient algorithms for
computing the Cholesky decomposition in many numerical linear algebra packages.

Now we make use of two basic properties of the determinant. First, the deter-
minant of a product of matrices is equal to the product of the individual matrices’
determinants. Second, the determinant of the transpose is equal to the determinant
of the original matrix. Combining these two facts, we see that |Z| = |L||LT| = |L|>.
Now, we remember that L is a lower triangular matrix. It is easily checked that
the determinant of a lower triangular matrix is given by the product of its diago-
nal entries €, ..., €4_, where ¢, = [¥¥. Thus, we find two important identities for
symmetric positive definite matrices:

d-1
=l =[] ¢ (A.6)
i=0
d-1
In|Z[=2) In¢;. (A.7)
i=0

The second form is especially useful for large matrices. There, computing the log-
determinant is numerically preferable to computing the determinant itself.

We can also exploit the structure of symmetric Toeplitz matrices to further sim-
plify the computation of the determinant. However, here we won’t obtain an exact
result but only an asymptotic approximation. This will nonetheless be very useful
for large matrices where even the Cholesky factorization can be difficult to obtain.

We will investigate the asymptotic behavior of eigenvalues of Toeplitz matrices.
First, we recall the defining property of Toeplitz matrices. Let T € R*? be a
Toeplitz matrix. Then we can write TY = /=il where t € R? is a vector that fully
specifies the matrix. We will now try to understand what happens in the asymptotic
limit that the vector ¢ is very high dimensional. Thus, suppose we have an infinite
sequence of real numbers (¢, | k = ...,—2,-1,0,1,2,...). From this sequence we
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can construct a sequence of Toeplitz matrices T,, € R™" for n = 1, 2, ... as follows.
For any n € N, we define the matrix elements of T,, as

T = ti-j fori,j=0,1,..,n—1. (A.8)

The definition of T, will thus only need 2n — 1 elements t_(n=1)s -+ s Lo» - » bn1 from
the sequence. Note that for a symmetric Toeplitz sequence t;, = t_.

Under some light conditions there exists a continuous 27z-periodic function f(1)
that is defined through the discrete-time Fourier transform

fl@= ) ek, (A.9)

k=—o00

Conversely, the t; can be recovered from f using inverse transform

27
_ i iwk
t = 27r_£ dw f(w)e'“*. (A.10)

Thus the sequence (¢ ) determines the function f and vice versa. Moreover, this
means that the entire sequence of Toeplitz matrices is completely specified by the
continuous function f.

Now we are ready to state one of the most important theorems about Toeplitz ma-
trices: Szegd’s theorem. Let 7,4, ..., T, , be the eigenvalues of the matrix T,,. Szegd’s
theorem states that

. 1 n—-1 1 27
lim - ; F(ty,) = - l dw F(f(w)) (A.11)

n—oo

for any continuous function F. This result is very useful to find the asymptotic de-
terminant. In particular, note that the determinant is the product of eigenvalues,

and hence In |T,,| = Zlnz_ll In 7, ;. Thus, it is not hard to show that

ITol _ 1

27
—_— = — dw In f(w A.12
Jim in el = = [ dan (o) (A12)

which we can leverage to compute information rates. In particular, this formula can
be used for analytical computation of entropy rates of Gaussian processes [194].

We will instead use this theorem to find a an approximate way to compute the de-
terminant of a large Toeplitz matrix. We can approximate the integral by a Riemann
sum

In|T,] 1 R
im — "~ —
nhm o Eolnf(com) (A.13)
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where w,, = 2rm/N for some large N. Now, inserting Eq. (A.9) we find

-1

N
I, 1
lim el o 2
1m N

n—oo n

In Z ti exp (_127lr\llcm) . (A14)
k=—00

m=0 -

In practice we cannot perform the infinite sum over k. Thus, we must truncate
the series. We truncate the series such that t, = 0 for |k| > N/2. Then, the sum
over k becomes the discrete Fourier transform (DFT). We recall that the DFT of the
sequence t; for k = —|N/2|, ...,0,...,|N/2] is another sequence (4,,), defined by

[N/2]

Am = Z ty exp (_127Jr\lrcm> (A.15)
k=—|N/2|

form =0,...,N — 1. Hence, we have derived the approximation

N-1

. In|T,] 1
’}Ln‘)lo - NNmzzoln/lm. (A.16)

The DFT coefficients 4,, represent the inner sum in Eq. (A.14), when truncated to
k = —|N/2|,...,0,...,|[N/2]. In principle we want to choose N as large as possible.
However, given a matrix T,, we only know the values t_,, ..., tg, ..., t,. Thus, the
maximum value of N that we can use is N = 2n.

This means, our approximation for the log-determinant of T, for large n can be

written as
2n—1

In|T,| z% > 10 (A17)
m=0

It is easy to verify that this formula converges to Eq. (A.14) as n — oo. This formula
is also very efficient to evaluate on modern computers. The sequence Ay, ..., 45,1
can be easily computed via the FFT algorithm from the sequence of ¢,. Efficient
implementations of the FFT algorithm are widely available.

Finally, we discuss how to evaluate the mutual information rate, defined as R(S, X) =
lim,,_ o I(S[ty : t,], X[ty : t,])/n,using Szegé’s theorem. Munakata and Kamiyabu
[123] used Szegd’s theorem to derive the formula

1 (7 | fix(@)?
R(S,X) = —5‘/(; dw In <1 - —fss(c‘))ﬁcx(w)) (A.18)

where the functions fyz(w) = 2,0;_00 tag, e~k represent the discrete-time Fourier
transforms of the covariances of the matrices Zyp in the limit n — oco. As above, we

141



A Notes on the Computation of the Gaussian Approximation

are going to approximate this formula using the discrete Fourier transform. We
define DFT sequences for the matrices Zog as Aqg m = Zzz_n tag,m €XP(—iwp,k) for
w,, = 2rm/N. This results in the estimate for the mutual information rate

1 2n—1 |A |2
RS.X)~—> ) In{1-—20—) . (A.19)
2 m=0 /lss,m/lxx,m

More information about asymptotics and other results for Toeplitz matrices can
be found in the review of Gray [71].
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Summary

Understanding and quantifying information transmission is crucial for improving
and analyzing biological and engineered systems. Most, if not all, information-
processing systems process signals that vary in time and generally information is
not just contained in the instantaneous values of these signals, but also in their tem-
poral characteristics. Quantifying information transmitted via time-varying signals
thus requires the mutual information between input and output signals as a func-
tion of time, i.e., between the input and output trajectories. Moreover, the trajec-
tory mutual information is needed for calculating the key performance measure of
information processing—the mutual information rate—quantifying the amount of
information transmitted per unit time. Yet, computing the mutual information be-
tween trajectories is notoriously difficult due to the high dimensionality of trajectory
space. The curse of dimensionality makes traditional non-parametric information
estimates infeasible, so existing methods for computing the mutual information be-
tween trajectories rely on approximations or simplifying assumptions.

This thesis introduces Path Weight Sampling (PWS), a novel Monte Carlo frame-
work for exactly calculating the trajectory mutual information for any system de-
scribed by a dynamical stochastic model. The principal idea is to use the stochastic
model to evaluate the exact conditional probability of an individual output trajec-
tory, for a given input trajectory, and to compute the marginal probability for the
same output trajectory via a Monte Carlo marginalization in trajectory space. By
averaging the log-ratio of these probabilities over many stochastic realizations of
the system, we obtain an unbiased estimate of the trajectory mutual information.
Moreover, PWS also makes it possible to compute the mutual information between
input and output trajectories for systems with hidden internal states as well as sys-
tems with feedback from output to input. In this thesis, we present three variants
of PWS, which all compute the conditional probability in the same way but differ in
the way the marginal output probability is obtained.

In Chapter 2, we present Direct PWS, the simplest variant of PWS which com-
putes the marginal output probability as a brute-force average over the conditional
trajectory probabilities. While this scheme is feasible for simple systems, the direct
Monte Carlo averaging procedure becomes more difficult for larger systems and ex-
ponentially harder for longer trajectories.

Our second and third variants of PWS are based on the realization that computing
the marginal trajectory probability for a stochastic model is equivalent to computing
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Summary

the partition function in statistical physics. These schemes leverage techniques for
computing free energies from statistical physics. In Chapter 3, we first introduce
Rosenbluth-Rosenbluth PWS (RR-PWS) which exploits the analogy between signal
trajectory sampling and polymer sampling, and is based on efficient techniques for
computing the (excess) chemical potential of a polymer. Secondly, we introduce
thermodynamic integration PWS (TI-PWS) which is based on using MCMC sam-
pling trajectory space to compute the marginal probability via thermodynamic inte-
gration. We apply PWS to a simple toy model of gene expression, showing that both
of these variants, but especially RR-PWS, significantly improve the performance of
PWS.

To demonstrate the power of PWS and to gain new insights about the accuracy of
biochemical signaling we apply PWS to the bacterial chemotaxis system, a complex
biological information-processing system. In Chapter 4, we build a mechanistic
model of chemotaxis based on previous literature and use PWS with this model to
compute the mutual information rate of a bacterium in a shallow gradient. By com-
paring our model against experiments performed by Mattingly et al. [107], we find
discrepancies between the model predictions and the experimental results. We re-
solve these discrepancies by adapting our literature-based model, suggesting that in
E. coli the number of receptor clusters is much smaller than hitherto believed, while
their size is much larger. Moreover, using the adjusted model we find that in shal-
low gradients the mutual information rate computed using PWS closely matches
the rate obtained by Mattingly et al. via a Gaussian approximation, justifying their
use of the approximation a posteriori.

The Gaussian approximation for the mutual information rate is widely used in
practice, yet it relies on assumptions of linear dynamics and additive Gaussian noise
which are often violated in inherently nonlinear physical or biological systems. To
assess the accuracy of the Gaussian approximation when applied to nonlinear sys-
tems we require an exact method, such as PWS, to provide an accurate benchmark
for the trajectory mutual information. In Chapter 5 we use PWS to systematically
assess the accuracy of the Gaussian approximation through two case studies: first,
a discrete linear system which has near-Gaussian statistics but leads to a surpris-
ingly large error in the Gaussian information rate; and second, a continuous dif-
fusive system with a nonlinear transfer function, allowing us to quantify the error
of the Gaussian approximation as nonlinearity increases. These findings highlight
key instances where the Gaussian approximation fails and exact methods like PWS
become essential.

While PWS does not suffer from the limitations of the Gaussian approximation, it
requires a stochastic model of the system of interest, which is often unavailable. In
Chapter 6 we leverage recent advances in machine learning to learn a data-driven
stochastic model directly from experimental time-series data and use PWS with
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the resulting model to compute the trajectory mutual information. This approach,
which we call ML-PWS, makes it possible to compute the mutual information rate
of nonlinear systems, even in the absence of a known mechanistic or phenomeno-
logical model. We demonstrate that ML-PWS can yield highly accurate mutual in-
formation estimates purely from data, outperforming the Gaussian approximation
for nonlinear systems.
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